Physical techniques for intracellular delivery of exogeneous materials offer an attractive strategy to enhance the therapeutic efficiency of stem cells. However, these methods are currently limited by poor delivery efficiency as well as cytotoxic effects. Here, a high throughput microfluidic device is designed for efficient (approximate to 85%) cytosolic delivery of exogenous macromolecules with minimal cell death (less than 10%). The designed microfluidic device enables the generation of transient pores as the cells pass through the micron-sized constrictions (6-10 mu m) leading to the passive diffusion of extracellular cargos into the cell cytosol. Specifically, the microfluidic system is designed to induce a double deformation on the cell membrane at the squeezing zones to maximize intracellular delivery. Additionally, the flow rate, ionic concentration, and the molecular weight of the cargo are optimized for maximum efficiency. The optimized device enables cytosolic diffusion of small (3 kDa) and large molecules (70 kDa) without inducing any apoptotic effect. Overall, this double cell deformation platform offers new opportunities to rapidly and efficiently deliver extracellular cargo into stem cells without affecting their viability and functionality.

Intracellular Delivery of Exogenous Macromolecules into Human Mesenchymal Stem Cells by Double Deformation of the Plasma Membrane / Modaresi, Saman; Pacelli, Settimio; Subham, Siddharth; Dathathreya, Kavya; Paul, Arghya. - In: ADVANCED THERAPEUTICS. - ISSN 2366-3987. - 3:1(2019), p. 1900130. [10.1002/adtp.201900130]

Intracellular Delivery of Exogenous Macromolecules into Human Mesenchymal Stem Cells by Double Deformation of the Plasma Membrane

Pacelli, Settimio;
2019

Abstract

Physical techniques for intracellular delivery of exogeneous materials offer an attractive strategy to enhance the therapeutic efficiency of stem cells. However, these methods are currently limited by poor delivery efficiency as well as cytotoxic effects. Here, a high throughput microfluidic device is designed for efficient (approximate to 85%) cytosolic delivery of exogenous macromolecules with minimal cell death (less than 10%). The designed microfluidic device enables the generation of transient pores as the cells pass through the micron-sized constrictions (6-10 mu m) leading to the passive diffusion of extracellular cargos into the cell cytosol. Specifically, the microfluidic system is designed to induce a double deformation on the cell membrane at the squeezing zones to maximize intracellular delivery. Additionally, the flow rate, ionic concentration, and the molecular weight of the cargo are optimized for maximum efficiency. The optimized device enables cytosolic diffusion of small (3 kDa) and large molecules (70 kDa) without inducing any apoptotic effect. Overall, this double cell deformation platform offers new opportunities to rapidly and efficiently deliver extracellular cargo into stem cells without affecting their viability and functionality.
2019
actin polymerization; cell membrane deformation; cell squeezing; intracellular delivery; microfluidic devices
01 Pubblicazione su rivista::01a Articolo in rivista
Intracellular Delivery of Exogenous Macromolecules into Human Mesenchymal Stem Cells by Double Deformation of the Plasma Membrane / Modaresi, Saman; Pacelli, Settimio; Subham, Siddharth; Dathathreya, Kavya; Paul, Arghya. - In: ADVANCED THERAPEUTICS. - ISSN 2366-3987. - 3:1(2019), p. 1900130. [10.1002/adtp.201900130]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1408930
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 12
social impact