The problem of effective equations is reviewed and discussed. Starting from the classical Langevin equation, we show how it can be generalized to Hamiltonian systems with non-standard kinetic terms. A numerical method for inferring effective equations from data is discussed; this protocol allows to check the validity of our results. In addition we show that, with a suitable treatment of time series, such protocol can be used to infer effective models from experimental data. We briefly discuss the practical and conceptual difficulties of a pure data-driven approach in the building of models.
Effective equations in complex systems: From Langevin to machine learning / Vulpiani, A.; Baldovin, M.. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - 2020:1(2020), p. 014003. [10.1088/1742-5468/ab535c]
Effective equations in complex systems: From Langevin to machine learning
Vulpiani A.
;Baldovin M.
2020
Abstract
The problem of effective equations is reviewed and discussed. Starting from the classical Langevin equation, we show how it can be generalized to Hamiltonian systems with non-standard kinetic terms. A numerical method for inferring effective equations from data is discussed; this protocol allows to check the validity of our results. In addition we show that, with a suitable treatment of time series, such protocol can be used to infer effective models from experimental data. We briefly discuss the practical and conceptual difficulties of a pure data-driven approach in the building of models.File | Dimensione | Formato | |
---|---|---|---|
Vulpiani_Effective_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.