General formulas are proposed for thoroughly evaluating the radiation efficiency of traveling-wave antennas operating in any radiating regime. Indeed, existing theoretical models only work in the scanned-beam region, where the radiating mode is considerably above cutoff and the perturbation method applies. The analysis provided here extends the application of the perturbation method close to the cutoff condition, thus providing a correct estimation of the losses even in the case of broadside radiation. This case is particularly important for Fabry-Perot cavity leaky-wave antennas (FPC-LWAs) based on partially reflecting screens (PRSs), which are commonly designed to generate a broadside pencil beam. However, the previous works on FPC-LWAs always assume either a lossless PRS, or a lossless dielectric cover layer thus neglecting metal and dielectric losses: a hypothesis that is no longer fulfilled at high frequencies, such as millimeter-wave and submillimeter-wave frequencies. An original theoretical framework is thus developed to derive analytical formulas for a rigorous evaluation of losses when either lossy PRS or lossy dielectric cover layers are employed. Interestingly, the equivalence between a lossy PRS and a lossy dielectric cover layer is shown from a theoretical viewpoint. All the findings derived here are validated through full-wave simulations to corroborate the proposed analysis.

Rigorous evaluation of losses in uniform leaky-wave antennas / Fuscaldo, W. - In: IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. - ISSN 0018-926X. - 68:2(2020), pp. 643-655. [10.1109/TAP.2019.2940464]

Rigorous evaluation of losses in uniform leaky-wave antennas

Fuscaldo W
2020

Abstract

General formulas are proposed for thoroughly evaluating the radiation efficiency of traveling-wave antennas operating in any radiating regime. Indeed, existing theoretical models only work in the scanned-beam region, where the radiating mode is considerably above cutoff and the perturbation method applies. The analysis provided here extends the application of the perturbation method close to the cutoff condition, thus providing a correct estimation of the losses even in the case of broadside radiation. This case is particularly important for Fabry-Perot cavity leaky-wave antennas (FPC-LWAs) based on partially reflecting screens (PRSs), which are commonly designed to generate a broadside pencil beam. However, the previous works on FPC-LWAs always assume either a lossless PRS, or a lossless dielectric cover layer thus neglecting metal and dielectric losses: a hypothesis that is no longer fulfilled at high frequencies, such as millimeter-wave and submillimeter-wave frequencies. An original theoretical framework is thus developed to derive analytical formulas for a rigorous evaluation of losses when either lossy PRS or lossy dielectric cover layers are employed. Interestingly, the equivalence between a lossy PRS and a lossy dielectric cover layer is shown from a theoretical viewpoint. All the findings derived here are validated through full-wave simulations to corroborate the proposed analysis.
2020
Fabry-Perot cavity (FPC) antennas; frequency selective surfaces; leaky waves
01 Pubblicazione su rivista::01a Articolo in rivista
Rigorous evaluation of losses in uniform leaky-wave antennas / Fuscaldo, W. - In: IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. - ISSN 0018-926X. - 68:2(2020), pp. 643-655. [10.1109/TAP.2019.2940464]
File allegati a questo prodotto
File Dimensione Formato  
Fuscaldo_Rigorous_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.92 MB
Formato Adobe PDF
3.92 MB Adobe PDF   Contatta l'autore
Fuscaldo_preprint_Rigorous_2020.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 8.07 MB
Formato Adobe PDF
8.07 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1407117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact