The present electrophysiological (EEG) study investigated the neural correlates of perceiving effortful vs. effortless movements belonging to a specific repertoire (ballet). Previous evidence has shown an increased heart and respiratory rate during the observation and imagination of human actions that require a great muscular effort. In addition, TMS (transcranial magnetic stimulation) and EEG studies have evidenced a greater muscle-specific cortical excitability and an increase in late event-related potentials during the observation of effortful actions. In this investigation, fifteen professional female ballet dancers and 15 controls with no experience whatsoever with dance, gymnastics, or martial arts were recruited. They were shown 326 short videos displaying a male dancer performing standard ballet steps that could be either effortful or relatively effortless. Participants were instructed to observe each clip and imagine themselves physically executing the same movement. Importantly, they were blinded to the stimuli properties. The observation of effortful compared with effortless movements resulted in a larger P300 over frontal sites in dancers only, likely because of their visuomotor expertise with the specific steps. Moreover, an enhanced Late Positivity was identified over posterior sites in response to effortful stimuli in both groups, possibly reflecting the processing of larger quantities of visual kinematic information. The source reconstruction swLORETA performed on the Late Positivity component showed greater engagement of frontoparietal regions in dancers, while task-related frontal and occipitotemporal visual regions were more active in controls. It, therefore, appears that, in dancers, effort information was encoded in a more refined manner during action observation and in the absence of explicit instruction. Acquired motor knowledge seems to result in visuomotor resonance processes, which, in turn, underlies enhanced action representation of the observed movements.

Muscular effort coding in action representation in ballet dancers and controls: electrophysiological evidence / Orlandi, Andrea; D'Incà, Silvia; Proverbio, Alice Mado. - In: BRAIN RESEARCH. - ISSN 0006-8993. - 1733:(2020). [10.1016/j.brainres.2020.146712]

Muscular effort coding in action representation in ballet dancers and controls: electrophysiological evidence

Orlandi, Andrea
;
2020

Abstract

The present electrophysiological (EEG) study investigated the neural correlates of perceiving effortful vs. effortless movements belonging to a specific repertoire (ballet). Previous evidence has shown an increased heart and respiratory rate during the observation and imagination of human actions that require a great muscular effort. In addition, TMS (transcranial magnetic stimulation) and EEG studies have evidenced a greater muscle-specific cortical excitability and an increase in late event-related potentials during the observation of effortful actions. In this investigation, fifteen professional female ballet dancers and 15 controls with no experience whatsoever with dance, gymnastics, or martial arts were recruited. They were shown 326 short videos displaying a male dancer performing standard ballet steps that could be either effortful or relatively effortless. Participants were instructed to observe each clip and imagine themselves physically executing the same movement. Importantly, they were blinded to the stimuli properties. The observation of effortful compared with effortless movements resulted in a larger P300 over frontal sites in dancers only, likely because of their visuomotor expertise with the specific steps. Moreover, an enhanced Late Positivity was identified over posterior sites in response to effortful stimuli in both groups, possibly reflecting the processing of larger quantities of visual kinematic information. The source reconstruction swLORETA performed on the Late Positivity component showed greater engagement of frontoparietal regions in dancers, while task-related frontal and occipitotemporal visual regions were more active in controls. It, therefore, appears that, in dancers, effort information was encoded in a more refined manner during action observation and in the absence of explicit instruction. Acquired motor knowledge seems to result in visuomotor resonance processes, which, in turn, underlies enhanced action representation of the observed movements.
2020
action observation network; dance expertise; ERP; effort; kinematics; superior temporal gyrus
01 Pubblicazione su rivista::01a Articolo in rivista
Muscular effort coding in action representation in ballet dancers and controls: electrophysiological evidence / Orlandi, Andrea; D'Incà, Silvia; Proverbio, Alice Mado. - In: BRAIN RESEARCH. - ISSN 0006-8993. - 1733:(2020). [10.1016/j.brainres.2020.146712]
File allegati a questo prodotto
File Dimensione Formato  
Orlandi_Muscular-effort_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.1 MB
Formato Adobe PDF
2.1 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1406682
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact