We study radial sign-changing solutions of a class of fully nonlinear elliptic Dirichlet problems in a ball, driven by the extremal Pucci's operators and with a power nonlinear term. We first determine a new critical exponent related to the existence or nonexistence of such solutions. Then we analyze the asymptotic behavior of the radial nodal solutions as the exponents approach the critical values, showing that new concentration phenomena occur. Finally we define a suitable weighted energy for these solutions and compute its limit value.

New concentration phenomena for a class of radial fully nonlinear equations / Galise, G.; Iacopetti, A.; Leoni, F.; Pacella, F.. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 37:(2020), pp. 1109-1141. [10.1016/j.anihpc.2020.03.003]

New concentration phenomena for a class of radial fully nonlinear equations

Galise G.;Leoni F.;Pacella F.
2020

Abstract

We study radial sign-changing solutions of a class of fully nonlinear elliptic Dirichlet problems in a ball, driven by the extremal Pucci's operators and with a power nonlinear term. We first determine a new critical exponent related to the existence or nonexistence of such solutions. Then we analyze the asymptotic behavior of the radial nodal solutions as the exponents approach the critical values, showing that new concentration phenomena occur. Finally we define a suitable weighted energy for these solutions and compute its limit value.
2020
Asymptotic analysis; critical exponents; fully nonlinear Dirichlet problems; radial solutions; sign-changing solutions
01 Pubblicazione su rivista::01a Articolo in rivista
New concentration phenomena for a class of radial fully nonlinear equations / Galise, G.; Iacopetti, A.; Leoni, F.; Pacella, F.. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 37:(2020), pp. 1109-1141. [10.1016/j.anihpc.2020.03.003]
File allegati a questo prodotto
File Dimensione Formato  
Galise_preprint_New-concentration-phenomena_2020.pdf

solo gestori archivio

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 411.57 kB
Formato Adobe PDF
411.57 kB Adobe PDF   Contatta l'autore
Galise_New-concentration-phenomena_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 453.85 kB
Formato Adobe PDF
453.85 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1406550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact