We study radial sign-changing solutions of a class of fully nonlinear elliptic Dirichlet problems in a ball, driven by the extremal Pucci's operators and with a power nonlinear term. We first determine a new critical exponent related to the existence or nonexistence of such solutions. Then we analyze the asymptotic behavior of the radial nodal solutions as the exponents approach the critical values, showing that new concentration phenomena occur. Finally we define a suitable weighted energy for these solutions and compute its limit value.
New concentration phenomena for a class of radial fully nonlinear equations / Galise, G.; Iacopetti, A.; Leoni, F.; Pacella, F.. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 37:(2020), pp. 1109-1141. [10.1016/j.anihpc.2020.03.003]
New concentration phenomena for a class of radial fully nonlinear equations
Galise G.;Leoni F.;Pacella F.
2020
Abstract
We study radial sign-changing solutions of a class of fully nonlinear elliptic Dirichlet problems in a ball, driven by the extremal Pucci's operators and with a power nonlinear term. We first determine a new critical exponent related to the existence or nonexistence of such solutions. Then we analyze the asymptotic behavior of the radial nodal solutions as the exponents approach the critical values, showing that new concentration phenomena occur. Finally we define a suitable weighted energy for these solutions and compute its limit value.File | Dimensione | Formato | |
---|---|---|---|
Galise_preprint_New-concentration-phenomena_2020.pdf
solo gestori archivio
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
411.57 kB
Formato
Adobe PDF
|
411.57 kB | Adobe PDF | Contatta l'autore |
Galise_New-concentration-phenomena_2020.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
453.85 kB
Formato
Adobe PDF
|
453.85 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.