A general class of probability density functions (1 (‖x‖) )γ β u(x, t) = Ct−αd − ctα, x ∈ Rd,t >0, + is considered, containing as particular case the Barenblatt solutions arising, for instance, in the study of nonlinear heat equations. Alternative probabilistic representations of the Barenblatt-type solutions u(x, t) are proposed. In the one-dimensional case, by means of this approach, u(x, t) can be connected with the wave propagation.

Alternative probabilistic representations of barenblatt-type solutions / De Gregorio, A.; Garra, R.. - In: MODERN STOCHASTICS: THEORY AND APPLICATIONS. - ISSN 2351-6054. - 7:1(2020), pp. 97-112. [10.15559/20-VMSTA151]

Alternative probabilistic representations of barenblatt-type solutions

De Gregorio A.
;
Garra R.
2020

Abstract

A general class of probability density functions (1 (‖x‖) )γ β u(x, t) = Ct−αd − ctα, x ∈ Rd,t >0, + is considered, containing as particular case the Barenblatt solutions arising, for instance, in the study of nonlinear heat equations. Alternative probabilistic representations of the Barenblatt-type solutions u(x, t) are proposed. In the one-dimensional case, by means of this approach, u(x, t) can be connected with the wave propagation.
2020
anomalous diffusion; Beta random variable; Darboux equation; euler; Fourier transform; nonlinear diffusion equation; Poisson; random velocity 2010 MSC 60G07
01 Pubblicazione su rivista::01a Articolo in rivista
Alternative probabilistic representations of barenblatt-type solutions / De Gregorio, A.; Garra, R.. - In: MODERN STOCHASTICS: THEORY AND APPLICATIONS. - ISSN 2351-6054. - 7:1(2020), pp. 97-112. [10.15559/20-VMSTA151]
File allegati a questo prodotto
File Dimensione Formato  
De Gregorio_Alternative-probabilistic_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 206.67 kB
Formato Adobe PDF
206.67 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1406216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact