The operation of halide perovskite optoelectronic devices, including solar cells and LEDs, is strongly influenced by the mobility of ions comprising the crystal structure. This peculiarity is particularly true when considering the long-term stability of devices. A detailed understanding of the ion migrationdriven degradation pathways is critical to design effective stabilization strategies. Nonetheless, despite substantial research in this first decade of perovskite photovoltaics, the long-term effects of ion migration remain elusive due to the complex chemistry of lead halide perovskites. By linking materials chemistry to device optoelectronics, this study highlights that electrical bias-induced perovskite amorphization and phase segregation is a crucial degradation mechanism in planar mixed halide perovskite solar cells. Depending on the biasing potential and the injected charge, halide segregation occurs, forming crystalline iodide-rich domains, which govern light emission and participate in light absorption and photocurrent generation. Additionally, the loss of crystallinity limits charge collection efficiency and eventually degrades the device performance.

Ion Migration‐Induced Amorphization and Phase Segregation as a Degradation Mechanism in Planar Perovskite Solar Cells / Di Girolamo, Diego; Phung, Nga; Kosasih, Felix Utama; Di Giacomo, Francesco; Matteocci, Fabio; Smith, Joel A.; Flatken, Marion A.; Köbler, Hans; Turren Cruz, Silver H.; Mattoni, Alessandro; Cinà, Lucio; Rech, Bernd; Latini, Alessandro; Divitini, Giorgio; Ducati, Caterina; Di Carlo, Aldo; Dini, Danilo; Abate, Antonio. - In: ADVANCED ENERGY MATERIALS. - ISSN 1614-6832. - 10:25(2020), pp. 1-11. [10.1002/aenm.202000310]

Ion Migration‐Induced Amorphization and Phase Segregation as a Degradation Mechanism in Planar Perovskite Solar Cells

Di Girolamo, Diego
Primo
Investigation
;
Latini, Alessandro
Investigation
;
Dini, Danilo
Penultimo
Supervision
;
2020

Abstract

The operation of halide perovskite optoelectronic devices, including solar cells and LEDs, is strongly influenced by the mobility of ions comprising the crystal structure. This peculiarity is particularly true when considering the long-term stability of devices. A detailed understanding of the ion migrationdriven degradation pathways is critical to design effective stabilization strategies. Nonetheless, despite substantial research in this first decade of perovskite photovoltaics, the long-term effects of ion migration remain elusive due to the complex chemistry of lead halide perovskites. By linking materials chemistry to device optoelectronics, this study highlights that electrical bias-induced perovskite amorphization and phase segregation is a crucial degradation mechanism in planar mixed halide perovskite solar cells. Depending on the biasing potential and the injected charge, halide segregation occurs, forming crystalline iodide-rich domains, which govern light emission and participate in light absorption and photocurrent generation. Additionally, the loss of crystallinity limits charge collection efficiency and eventually degrades the device performance.
2020
perovskite solar cells; halide perovskites; photovoltaics; solar energy
01 Pubblicazione su rivista::01a Articolo in rivista
Ion Migration‐Induced Amorphization and Phase Segregation as a Degradation Mechanism in Planar Perovskite Solar Cells / Di Girolamo, Diego; Phung, Nga; Kosasih, Felix Utama; Di Giacomo, Francesco; Matteocci, Fabio; Smith, Joel A.; Flatken, Marion A.; Köbler, Hans; Turren Cruz, Silver H.; Mattoni, Alessandro; Cinà, Lucio; Rech, Bernd; Latini, Alessandro; Divitini, Giorgio; Ducati, Caterina; Di Carlo, Aldo; Dini, Danilo; Abate, Antonio. - In: ADVANCED ENERGY MATERIALS. - ISSN 1614-6832. - 10:25(2020), pp. 1-11. [10.1002/aenm.202000310]
File allegati a questo prodotto
File Dimensione Formato  
DiGirolamo_Ion Migration-Induced_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1406147
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 122
  • ???jsp.display-item.citation.isi??? 95
social impact