We adapt the metric approach to the study of stationary ergodic Hamilton-Jacobi equations, for which a notion of admissible random (sub)solution is defined. For any level of the Hamiltonian greater than or equal to a distinguished critical value, we define an intrinsic random semidistance and prove that an asymptotic norm does exist. Taking as source region a suitable class of closed random sets, we show that the Lax formula provides admissible subsolutions. This enables us to relate the degeneracies of the critical stable norm to the existence/nonexistence of exact or approximate critical admissible solutions.

Metric techniques for convex stationary ergodic Hamiltonians / Davini, Andrea; Siconolfi, Antonio. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 40:3(2011), pp. 391-421. [10.1007/s00526-010-0345-z]

Metric techniques for convex stationary ergodic Hamiltonians

DAVINI, ANDREA;SICONOLFI, Antonio
2011

Abstract

We adapt the metric approach to the study of stationary ergodic Hamilton-Jacobi equations, for which a notion of admissible random (sub)solution is defined. For any level of the Hamiltonian greater than or equal to a distinguished critical value, we define an intrinsic random semidistance and prove that an asymptotic norm does exist. Taking as source region a suitable class of closed random sets, we show that the Lax formula provides admissible subsolutions. This enables us to relate the degeneracies of the critical stable norm to the existence/nonexistence of exact or approximate critical admissible solutions.
2011
01 Pubblicazione su rivista::01a Articolo in rivista
Metric techniques for convex stationary ergodic Hamiltonians / Davini, Andrea; Siconolfi, Antonio. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 40:3(2011), pp. 391-421. [10.1007/s00526-010-0345-z]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/140451
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact