We study the asymptotic behavior of simply connected Riemannian manifolds X of strictly negative curvature admitting a non-uniform lattice Γ. If the quotient manifold X = Γ\X is asymptotically 1=4-pinched, we prove that Γ is divergent and U X has finite Bowen-Margulis measure (which is then ergodic and totally conservative with respect to the geodesic flow); moreover, we show that, in this case, the volume growth of balls B(x,R) in X is asymptotically equivalent to a purely exponential function c.x/eδR, where δ is the topological entropy of the geodesic flow of X . This generalizes Margulis' celebrated theorem to negatively curved spaces of finite volume. In contrast, we exhibit examples of lattices Γ in negatively curved spaces X (not asymptotically 1/4-pinched) where, depending on the critical exponent of the parabolic subgroups and on the finiteness of the Bowen- Margulis measure, the growth function is exponential, lower-exponential or even upper-exponential.

Asymptotic geometry of negatively curved manifolds of finite volume / Dal'Bo, F.; Peigne, M.; Picaud, J. -C.; Sambusetti, A.. - In: ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - ISSN 0012-9593. - 52:6(2019), pp. 1459-1485. [10.24033/asens.2413]

Asymptotic geometry of negatively curved manifolds of finite volume

Sambusetti A.
2019

Abstract

We study the asymptotic behavior of simply connected Riemannian manifolds X of strictly negative curvature admitting a non-uniform lattice Γ. If the quotient manifold X = Γ\X is asymptotically 1=4-pinched, we prove that Γ is divergent and U X has finite Bowen-Margulis measure (which is then ergodic and totally conservative with respect to the geodesic flow); moreover, we show that, in this case, the volume growth of balls B(x,R) in X is asymptotically equivalent to a purely exponential function c.x/eδR, where δ is the topological entropy of the geodesic flow of X . This generalizes Margulis' celebrated theorem to negatively curved spaces of finite volume. In contrast, we exhibit examples of lattices Γ in negatively curved spaces X (not asymptotically 1/4-pinched) where, depending on the critical exponent of the parabolic subgroups and on the finiteness of the Bowen- Margulis measure, the growth function is exponential, lower-exponential or even upper-exponential.
2019
Riemannian geometry; negative curvature; volume
01 Pubblicazione su rivista::01a Articolo in rivista
Asymptotic geometry of negatively curved manifolds of finite volume / Dal'Bo, F.; Peigne, M.; Picaud, J. -C.; Sambusetti, A.. - In: ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - ISSN 0012-9593. - 52:6(2019), pp. 1459-1485. [10.24033/asens.2413]
File allegati a questo prodotto
File Dimensione Formato  
Dal'Bo_Asymptotic-geometry_2019.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 916.45 kB
Formato Adobe PDF
916.45 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1403862
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact