This minicourse contains a description of recent results on the modelling of rarefied gases in weakly non equilibrium regimes, and the numerical methods used to approximate the resulting equations. Therefore this work focuses on BGK type approximations, rather than on full Boltzmann models. Within this framework, models for polyatomic gases and for mixtures will be considered. We will also address numerical issues characteristic of the difficulties one encounters when integrating kinetic equations. In particular, we will consider asymptotic preserving schemes, which are designed to approximate equilibrium solutions, without resolving the fast scales of the approach to equilibrium.

Kinetic models of BGK type and their numerical integration / Puppo, Gabriella Anna. - In: RIVISTA DI MATEMATICA DELLA UNIVERSITÀ DI PARMA. - ISSN 0035-6298. - (2019), pp. 299-349.

Kinetic models of BGK type and their numerical integration

Gabriella Puppo
2019

Abstract

This minicourse contains a description of recent results on the modelling of rarefied gases in weakly non equilibrium regimes, and the numerical methods used to approximate the resulting equations. Therefore this work focuses on BGK type approximations, rather than on full Boltzmann models. Within this framework, models for polyatomic gases and for mixtures will be considered. We will also address numerical issues characteristic of the difficulties one encounters when integrating kinetic equations. In particular, we will consider asymptotic preserving schemes, which are designed to approximate equilibrium solutions, without resolving the fast scales of the approach to equilibrium.
2019
Boltzmann equation; kinetic equation; asymptotic preserving
01 Pubblicazione su rivista::01a Articolo in rivista
Kinetic models of BGK type and their numerical integration / Puppo, Gabriella Anna. - In: RIVISTA DI MATEMATICA DELLA UNIVERSITÀ DI PARMA. - ISSN 0035-6298. - (2019), pp. 299-349.
File allegati a questo prodotto
File Dimensione Formato  
Puppo_Kinetic-models_2019.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 597.37 kB
Formato Adobe PDF
597.37 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1402796
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact