In this paper, we develop a Mean Field Games approach to Cluster Analysis. We consider a finite mixture model, given by a convex combination of probability density functions, to describe the given data set. We interpret a data point as an agent of one of the populations represented by the components of the mixture model, and we introduce a corresponding optimal control problem. In this way, we obtain a multi-population Mean Field Games system which characterizes the parameters of the finite mixture model. Our method can be interpreted as a continuous version of the classical Expectation–Maximization algorithm.
A mean field games approach to cluster analysis / Aquilanti, L.; Cacace, S.; Camilli, F.; De Maio, R.. - In: APPLIED MATHEMATICS AND OPTIMIZATION. - ISSN 0095-4616. - 84:1(2021), pp. 299-323. [10.1007/s00245-019-09646-2]
A mean field games approach to cluster analysis
Aquilanti L.;Cacace S.;Camilli F.;De Maio R.
2021
Abstract
In this paper, we develop a Mean Field Games approach to Cluster Analysis. We consider a finite mixture model, given by a convex combination of probability density functions, to describe the given data set. We interpret a data point as an agent of one of the populations represented by the components of the mixture model, and we introduce a corresponding optimal control problem. In this way, we obtain a multi-population Mean Field Games system which characterizes the parameters of the finite mixture model. Our method can be interpreted as a continuous version of the classical Expectation–Maximization algorithm.File | Dimensione | Formato | |
---|---|---|---|
Aquilanti_Mean_2020.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
915.78 kB
Formato
Adobe PDF
|
915.78 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.