In this paper we study the relaxation of a class of functionals defined on distances induced by isotropic Riemannian metrics on an open subset of R-N. We prove that isotropic Riemannian metrics are dense in Finsler ones and we show that the relaxed functionals admit a specific integral representation.

On the relaxation of a class of functionals defined on Riemannian distances / Davini, Andrea. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - STAMPA. - 12:(2005), pp. 113-130.

On the relaxation of a class of functionals defined on Riemannian distances

DAVINI, ANDREA
2005

Abstract

In this paper we study the relaxation of a class of functionals defined on distances induced by isotropic Riemannian metrics on an open subset of R-N. We prove that isotropic Riemannian metrics are dense in Finsler ones and we show that the relaxed functionals admit a specific integral representation.
2005
gamma convergence; relaxation; riemannian and finsler metrics
01 Pubblicazione su rivista::01a Articolo in rivista
On the relaxation of a class of functionals defined on Riemannian distances / Davini, Andrea. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - STAMPA. - 12:(2005), pp. 113-130.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/140188
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact