We investigate tapered elastic arches with parabolic axis under uniform thermal gradients. A perturbation of the finite field equations yields a sequence of first-order differential systems, which is turned into a non-dimensional form. If the arch is shallow and slender and its reference shape is stress- free, a closed-form incremental response is found. We comment on the graphics help presenting the results, as a first step towards the investigation of possible non- linear responses superposed on such first-order thermo- elastic state.

Closed-form solutions for elastic tapered parabolic arches under uniform thermal gradients / Eroglu, Ugurcan; Ruta, Giuseppe. - In: MECCANICA. - ISSN 0025-6455. - 55:5(2020), pp. 1135-1152. [10.1007/s11012-020-01153-x]

Closed-form solutions for elastic tapered parabolic arches under uniform thermal gradients

Ruta, Giuseppe
Secondo
Membro del Collaboration Group
2020

Abstract

We investigate tapered elastic arches with parabolic axis under uniform thermal gradients. A perturbation of the finite field equations yields a sequence of first-order differential systems, which is turned into a non-dimensional form. If the arch is shallow and slender and its reference shape is stress- free, a closed-form incremental response is found. We comment on the graphics help presenting the results, as a first step towards the investigation of possible non- linear responses superposed on such first-order thermo- elastic state.
2020
Tapered parabolic arches, Thermal gradients, Perturbation, Closed-form solutions
01 Pubblicazione su rivista::01a Articolo in rivista
Closed-form solutions for elastic tapered parabolic arches under uniform thermal gradients / Eroglu, Ugurcan; Ruta, Giuseppe. - In: MECCANICA. - ISSN 0025-6455. - 55:5(2020), pp. 1135-1152. [10.1007/s11012-020-01153-x]
File allegati a questo prodotto
File Dimensione Formato  
Eroglu_Closed-formSolutions_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1401876
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact