Smooth Finsler metrics are a natural generalization of Riemannian ones and have been widely studied in the framework of differential geometry. The definition can be weakened by allowing the metric to be only Borel measurable. This generalization is necessary in view of applications, such as, for instance, optimization problems. In this paper we show that smooth Finsler metrics are dense in Borel ones, generalizing the results obtained in [15]. The case of degenerate Finsler distances is also discussed.

SMOOTH APPROXIMATION OF WEAK FINSLER METRICS / Davini, Andrea. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - STAMPA. - 18:(2005), pp. 509-530.

SMOOTH APPROXIMATION OF WEAK FINSLER METRICS

DAVINI, ANDREA
2005

Abstract

Smooth Finsler metrics are a natural generalization of Riemannian ones and have been widely studied in the framework of differential geometry. The definition can be weakened by allowing the metric to be only Borel measurable. This generalization is necessary in view of applications, such as, for instance, optimization problems. In this paper we show that smooth Finsler metrics are dense in Borel ones, generalizing the results obtained in [15]. The case of degenerate Finsler distances is also discussed.
2005
01 Pubblicazione su rivista::01a Articolo in rivista
SMOOTH APPROXIMATION OF WEAK FINSLER METRICS / Davini, Andrea. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - STAMPA. - 18:(2005), pp. 509-530.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/140187
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 12
social impact