Impregnation of Phase Change Materials (PCMs) into a porous medium is a promising way to stabilize their shape and improve thermal conductivity, which are essential for thermal energy storage and thermal management of small-size applications, such as electronic devices or batteries. However, in these composites a general understanding of how leakage is related to the characteristics of the porous material is still lacking. As a result, the energy density and the antileakage capability are often antagonistically coupled. In this work we overcome the current limitations, showing that a high energy density can be reached together with superior anti-leakage performance by using hierarchical macro-nanoporous metals for PCMs impregnation. By analyzing capillary phenomena and synthesizing a new type of material, it was demonstrated that a hierarchical trimodal macro-nanoporous metal (copper) provides superior antileakage capability (due to strong capillary forces in nanopores), high energy density (90 vol% of PCM load due to macropores) and improves the charging-discharging kinetics, due to a three-fold enhancement of thermal conductivity. It was further demonstrated by CFD simulations that such a composite can be used for thermal management of a battery pack and, unlike pure PCM, it is capable of maintaining the maximum temperature below the safety limit. The present results pave the way for the application of hierarchical macro-nanoporous metals for high-energy density, leakage-free, and shape-stabilized PCMs with enhanced thermal conductivity. These innovative composites can significantly facilitate the thermal management of compact energy systems such as electronic devices or high-power batteries by improving their efficiency, durability, and sustainability.
Hierarchical macro-nanoporous metals for leakage-free high-thermal conductivity shape-stabilized phase change materials / Grosu, Y.; Zhao, Y.; Giacomello, A.; Meloni, S.; Dauvergne, J. -L.; Nikulin, A.; Palomo, E.; Ding, Y.; Faik, A.. - In: APPLIED ENERGY. - ISSN 0306-2619. - 269:(2020). [10.1016/j.apenergy.2020.115088]
Hierarchical macro-nanoporous metals for leakage-free high-thermal conductivity shape-stabilized phase change materials
Giacomello A.;
2020
Abstract
Impregnation of Phase Change Materials (PCMs) into a porous medium is a promising way to stabilize their shape and improve thermal conductivity, which are essential for thermal energy storage and thermal management of small-size applications, such as electronic devices or batteries. However, in these composites a general understanding of how leakage is related to the characteristics of the porous material is still lacking. As a result, the energy density and the antileakage capability are often antagonistically coupled. In this work we overcome the current limitations, showing that a high energy density can be reached together with superior anti-leakage performance by using hierarchical macro-nanoporous metals for PCMs impregnation. By analyzing capillary phenomena and synthesizing a new type of material, it was demonstrated that a hierarchical trimodal macro-nanoporous metal (copper) provides superior antileakage capability (due to strong capillary forces in nanopores), high energy density (90 vol% of PCM load due to macropores) and improves the charging-discharging kinetics, due to a three-fold enhancement of thermal conductivity. It was further demonstrated by CFD simulations that such a composite can be used for thermal management of a battery pack and, unlike pure PCM, it is capable of maintaining the maximum temperature below the safety limit. The present results pave the way for the application of hierarchical macro-nanoporous metals for high-energy density, leakage-free, and shape-stabilized PCMs with enhanced thermal conductivity. These innovative composites can significantly facilitate the thermal management of compact energy systems such as electronic devices or high-power batteries by improving their efficiency, durability, and sustainability.File | Dimensione | Formato | |
---|---|---|---|
Grosu_postprint_Hierarchical-macro_2020.pdf
Open Access dal 02/07/2022
Note: https://arxiv.org/abs/2005.01585 https://www.sciencedirect.com/science/article/abs/pii/S0306261920306000
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
5.78 MB
Formato
Adobe PDF
|
5.78 MB | Adobe PDF | |
Grosu_Hierarchical-macro_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.