In this paper, we propose a solution to the problem of scoring and ranking partially ordered data, by exploiting the spectral properties of so-called matrices of mutual ranking probabilities, a class of matrices which comprise and convey information on the dominance among statistical units. The procedure is optimal in many respects and overcomes the limitations of other ranking tools, which may fail to deliver acceptable solutions, even in trivial cases. We show the algorithm in action, on real data pertaining to the smartness of a subset of European cities

Optimal scoring of partially ordered data,with an application to the ranking of smart cities / Fattore, Marco; Arcagni, ALBERTO GIOVANNI; Maggino, Filomena. - (2019), pp. 855-860. (Intervento presentato al convegno SIS 2019 tenutosi a Milano).

Optimal scoring of partially ordered data,with an application to the ranking of smart cities

Alberto Arcagni;Filomena Maggino
2019

Abstract

In this paper, we propose a solution to the problem of scoring and ranking partially ordered data, by exploiting the spectral properties of so-called matrices of mutual ranking probabilities, a class of matrices which comprise and convey information on the dominance among statistical units. The procedure is optimal in many respects and overcomes the limitations of other ranking tools, which may fail to deliver acceptable solutions, even in trivial cases. We show the algorithm in action, on real data pertaining to the smartness of a subset of European cities
2019
SIS 2019
Multi-indicator system; Mutual ranking probability; Partially ordered set; Ranking, Scoring; Smart City
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Optimal scoring of partially ordered data,with an application to the ranking of smart cities / Fattore, Marco; Arcagni, ALBERTO GIOVANNI; Maggino, Filomena. - (2019), pp. 855-860. (Intervento presentato al convegno SIS 2019 tenutosi a Milano).
File allegati a questo prodotto
File Dimensione Formato  
Arcagni_optimal-scoring_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 798.13 kB
Formato Adobe PDF
798.13 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1399368
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact