Naturally occurring modified nucleobases, next to the five canonical nucleobases, extend the chemical information content of DNA and RNA. They are known to exert profound effects in a variety of microbiological and mammalian systems as they can be readily incorporated into DNA. Nonetheless, their role in regulating the basic functions in a cell is still largely unexplored. Moreover, over the past two decades, chemically modified nucleobases have been developed as a versatile tool for chemical fine-tuning of artificial DNA in the emerging area of synthetic biology. Indeed, unnatural base pairing may possess higher specificity and thermal stability through a suitable design of artificial nucleobases and yield an artificially expanded genetic information system. While the emphasis of this Special Issue on the “Design, Synthesis, and Structures of Modified RNA/DNA Bases” is the rational design of new crystal and cocrystal structures of unnatural and epigenetic nucleobases, also including their drug complexes, from X-ray and/or neutron diffraction methods, theoretical analyses are also appropriate.

"Design, Synthesis, and Structures of Modified RNA/DNA Bases" / Portalone, Gustavo. - In: CRYSTALS. - ISSN 2073-4352. - 10:11(2020).

"Design, Synthesis, and Structures of Modified RNA/DNA Bases"

Gustavo Portalone
2020

Abstract

Naturally occurring modified nucleobases, next to the five canonical nucleobases, extend the chemical information content of DNA and RNA. They are known to exert profound effects in a variety of microbiological and mammalian systems as they can be readily incorporated into DNA. Nonetheless, their role in regulating the basic functions in a cell is still largely unexplored. Moreover, over the past two decades, chemically modified nucleobases have been developed as a versatile tool for chemical fine-tuning of artificial DNA in the emerging area of synthetic biology. Indeed, unnatural base pairing may possess higher specificity and thermal stability through a suitable design of artificial nucleobases and yield an artificially expanded genetic information system. While the emphasis of this Special Issue on the “Design, Synthesis, and Structures of Modified RNA/DNA Bases” is the rational design of new crystal and cocrystal structures of unnatural and epigenetic nucleobases, also including their drug complexes, from X-ray and/or neutron diffraction methods, theoretical analyses are also appropriate.
2020
noncanonical DNA base; noncanonical RNA base; noncanonical base-pairing; noncovalent interactions; crystal structure; quantum chemical calculations; energetics and structure prediction;
01 Pubblicazione su rivista::01m Editorial/Introduzione in rivista
"Design, Synthesis, and Structures of Modified RNA/DNA Bases" / Portalone, Gustavo. - In: CRYSTALS. - ISSN 2073-4352. - 10:11(2020).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1399222
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact