In this work, we focus on the family of shell formulations referred to as “solid shells”, where the simulation of shell-type structures is performed by means of a mesh of 3D solid elements, with typically only one element through the thickness. We propose a novel approach for alleviating shear and membrane locking phenomena, which typically appear in thin structures, based on the projection of strains onto discontinuous coarser polynomial spaces defined at element level. In particular, we present and investigate two different formulations based on this approach. Several numerical experiments prove the very good performance of both formulations in terms of displacements and stresses. The main advantages of the presented approach compared to existing solid shell formulations are its simplicity and numerical efficiency.
A simple and effective method based on strain projections to alleviate locking in isogeometric solid shells / Antolin, P.; Kiendl, J.; Pingaro, M.; Reali, A.. - In: COMPUTATIONAL MECHANICS. - ISSN 0178-7675. - 65:6(2020), pp. 1621-1631. [10.1007/s00466-020-01837-x]
A simple and effective method based on strain projections to alleviate locking in isogeometric solid shells
Pingaro M.Penultimo
;
2020
Abstract
In this work, we focus on the family of shell formulations referred to as “solid shells”, where the simulation of shell-type structures is performed by means of a mesh of 3D solid elements, with typically only one element through the thickness. We propose a novel approach for alleviating shear and membrane locking phenomena, which typically appear in thin structures, based on the projection of strains onto discontinuous coarser polynomial spaces defined at element level. In particular, we present and investigate two different formulations based on this approach. Several numerical experiments prove the very good performance of both formulations in terms of displacements and stresses. The main advantages of the presented approach compared to existing solid shell formulations are its simplicity and numerical efficiency.File | Dimensione | Formato | |
---|---|---|---|
Antolin_Simple_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.