Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal-epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal-epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%-95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins formed the high glycine-tyrosine or the high cysteine proteins but no core-box was produced in the matrix proteins of the hard corneous material of mammalian derivatives. © 2009 The Authors Journal compilation © 2009 Anatomical Society of Great Britain and Ireland.

Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes / Lorenzo, Alibardi; Luisa Dalla, Valle; Alessia, Nardi; Toni, Mattia. - In: JOURNAL OF ANATOMY. - ISSN 0021-8782. - 214:4(2009), pp. 560-586. [10.1111/j.1469-7580.2009.01045.x]

Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes

TONI, MATTIA
2009

Abstract

Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal-epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal-epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%-95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins formed the high glycine-tyrosine or the high cysteine proteins but no core-box was produced in the matrix proteins of the hard corneous material of mammalian derivatives. © 2009 The Authors Journal compilation © 2009 Anatomical Society of Great Britain and Ireland.
2009
corneous proteins; epidermis; evolution; genes; reptiles; sequencing
01 Pubblicazione su rivista::01a Articolo in rivista
Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes / Lorenzo, Alibardi; Luisa Dalla, Valle; Alessia, Nardi; Toni, Mattia. - In: JOURNAL OF ANATOMY. - ISSN 0021-8782. - 214:4(2009), pp. 560-586. [10.1111/j.1469-7580.2009.01045.x]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/139781
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 83
social impact