In the present work, we introduce a new numerical method based on a strong version of the mean-value theorem for integrals to solve quadratic Volterra integral equations and Fredholm integral equations of the second kind, for which there are theoretical monotonic non-negative solutions. By means of an equality theorem, the integral that appears in the aforementioned equations is transformed into one that enables a more accurate numerical solution with fewer calculations than other previously described methods. Convergence analysis is given.

A new numerical method for a class of Volterra and Fredholm integral equations / De Angelis, P.; De Marchis, R.; Martire, A. L.. - In: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0377-0427. - 379:(2020). [10.1016/j.cam.2020.112944]

A new numerical method for a class of Volterra and Fredholm integral equations

De Angelis P.;De Marchis R.;Martire A. L.
2020

Abstract

In the present work, we introduce a new numerical method based on a strong version of the mean-value theorem for integrals to solve quadratic Volterra integral equations and Fredholm integral equations of the second kind, for which there are theoretical monotonic non-negative solutions. By means of an equality theorem, the integral that appears in the aforementioned equations is transformed into one that enables a more accurate numerical solution with fewer calculations than other previously described methods. Convergence analysis is given.
2020
Fredholm integral equations; Mean-value theorem; Monotonic solutions; Quadratic Volterra integral equations
01 Pubblicazione su rivista::01a Articolo in rivista
A new numerical method for a class of Volterra and Fredholm integral equations / De Angelis, P.; De Marchis, R.; Martire, A. L.. - In: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0377-0427. - 379:(2020). [10.1016/j.cam.2020.112944]
File allegati a questo prodotto
File Dimensione Formato  
DeAngelis_ new-numerical-postprint_2020.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 287.36 kB
Formato Adobe PDF
287.36 kB Adobe PDF
DeAngelis_new-numerical-method_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 341.45 kB
Formato Adobe PDF
341.45 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1396340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact