In the present paper it is proved that a variety of associative PI-superalgebras with graded involution of finite basic rank over a field of characteristic zero is minimal of fixed $ast$-graded exponent if, and only if, it is generated by a subalgebra of an upper block triangular matrix algebra equipped with a suitable elementary $Z_2$-grading and graded involution.
Minimal varieties of PI-superalgebras with graded involution / Di Vincenzo, Onofrio Mario; da Silva, Viviane Ribeiro Tomaz; Spinelli, Ernesto. - In: ISRAEL JOURNAL OF MATHEMATICS. - ISSN 0021-2172. - 241:2(2021), pp. 869-909. [10.1007/s11856-021-2119-z]
Minimal varieties of PI-superalgebras with graded involution
Di Vincenzo, Onofrio Mario;da Silva, Viviane Ribeiro Tomaz;Spinelli, Ernesto
2021
Abstract
In the present paper it is proved that a variety of associative PI-superalgebras with graded involution of finite basic rank over a field of characteristic zero is minimal of fixed $ast$-graded exponent if, and only if, it is generated by a subalgebra of an upper block triangular matrix algebra equipped with a suitable elementary $Z_2$-grading and graded involution.File | Dimensione | Formato | |
---|---|---|---|
DiVincenzo_Minimal-varieties_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
443.06 kB
Formato
Adobe PDF
|
443.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
DiVincenzo_preprint_Minimal-varieties_2021.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
477.06 kB
Formato
Adobe PDF
|
477.06 kB | Adobe PDF | Visualizza/Apri PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.