This research focused on using ground tire rubber (GTR) with different grain sizes as a replacement for the mineral aggregates used in a cement-based mixture suitable for extrusion-based Additive Manufacturing. The use of two types of GTR particles and the possibility to apply rubberized mixtures in advanced manufacturing technologies are the innovative aspects of this work. At the base of this strategy is the possibility of achieving cementitious aggregates, which would potentially be improved regarding some technological-engineering requirements (lightness, thermal-acoustic insulation, energy dissipation capacity, durability) and environmentally sustainable. The integration of waste tires into cement-based materials is a promising solution for the reuse and recycling of such industrial waste. In addition, this approach may involve a considerable reduction in the use of natural resources (sand, water, coarse mineral aggregates) needed for the building materials production. The purpose of the research was to investigate the effect of sand-GTR replacement on certain chemical-physical properties of mixtures (permeable porosity, surface wetness, and water sorptivity), closely related to material durability. Besides, the role of rubber on the printability properties of the fresh material was evaluated. GTR fillers do not alter the rheological properties of the cement material, which was properly extruded with better print quality than the reference mixture. Concerning chemical-physical characterization, the GTR powder-granules synergy promotes good compaction of the mixture, hinders the cracks propagation in the cement matrix, decreases the permeable porosity, improves the surface hydrophobicity and preserves optimal water permeability

Tire recycled rubber for more eco-sustainable advanced cementitious aggregate / Sambucci, Matteo; Marini, Danilo; Valente, Marco. - In: RECYCLING. - ISSN 2313-4321. - 5:2(2020). [10.3390/recycling5020011]

Tire recycled rubber for more eco-sustainable advanced cementitious aggregate

Sambucci, Matteo
Primo
;
Marini, Danilo
Secondo
;
Valente, Marco
Ultimo
2020

Abstract

This research focused on using ground tire rubber (GTR) with different grain sizes as a replacement for the mineral aggregates used in a cement-based mixture suitable for extrusion-based Additive Manufacturing. The use of two types of GTR particles and the possibility to apply rubberized mixtures in advanced manufacturing technologies are the innovative aspects of this work. At the base of this strategy is the possibility of achieving cementitious aggregates, which would potentially be improved regarding some technological-engineering requirements (lightness, thermal-acoustic insulation, energy dissipation capacity, durability) and environmentally sustainable. The integration of waste tires into cement-based materials is a promising solution for the reuse and recycling of such industrial waste. In addition, this approach may involve a considerable reduction in the use of natural resources (sand, water, coarse mineral aggregates) needed for the building materials production. The purpose of the research was to investigate the effect of sand-GTR replacement on certain chemical-physical properties of mixtures (permeable porosity, surface wetness, and water sorptivity), closely related to material durability. Besides, the role of rubber on the printability properties of the fresh material was evaluated. GTR fillers do not alter the rheological properties of the cement material, which was properly extruded with better print quality than the reference mixture. Concerning chemical-physical characterization, the GTR powder-granules synergy promotes good compaction of the mixture, hinders the cracks propagation in the cement matrix, decreases the permeable porosity, improves the surface hydrophobicity and preserves optimal water permeability
File allegati a questo prodotto
File Dimensione Formato  
Sambucci_Tire-recycled-rubber_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 4.5 MB
Formato Adobe PDF
4.5 MB Adobe PDF Visualizza/Apri PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/1393348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact