In this paper we present the Portfolio Optimization Problem in the electricity generation framework. We consider traditional and fully controllable energy sources together with wind source, strongly supported by economical benefits but exposed to intermittent generation volatility. Due to the statistical uncertainty about parameters, we formalize the optimization problem in a probabilistic sense and solve it by using Genetic Algorithms.

Novel approach to generation Portfolio Optimization by using genetic algorithms and stochastic methods / Di Giorgio, A.; Mercurio, A.; Pimpinella, L.. - (2014), pp. 3196-3201. (Intervento presentato al convegno 2009 10th European Control Conference, ECC 2009 tenutosi a Budapest; Hungary).

Novel approach to generation Portfolio Optimization by using genetic algorithms and stochastic methods

Di Giorgio A.
;
Mercurio A.
;
Pimpinella L.
2014

Abstract

In this paper we present the Portfolio Optimization Problem in the electricity generation framework. We consider traditional and fully controllable energy sources together with wind source, strongly supported by economical benefits but exposed to intermittent generation volatility. Due to the statistical uncertainty about parameters, we formalize the optimization problem in a probabilistic sense and solve it by using Genetic Algorithms.
2014
2009 10th European Control Conference, ECC 2009
Generation Company; Genetic Algorithms; Monte Carlo method; Net Present Value; Portfolio
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Novel approach to generation Portfolio Optimization by using genetic algorithms and stochastic methods / Di Giorgio, A.; Mercurio, A.; Pimpinella, L.. - (2014), pp. 3196-3201. (Intervento presentato al convegno 2009 10th European Control Conference, ECC 2009 tenutosi a Budapest; Hungary).
File allegati a questo prodotto
File Dimensione Formato  
DiGiorgio_Novel-approach_2009.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 164.34 kB
Formato Adobe PDF
164.34 kB Adobe PDF   Contatta l'autore
VE_2014_11573-1391877.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 164.34 kB
Formato Adobe PDF
164.34 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1391877
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact