We study the time evolution of an incompressible fluid with axisymmetry without swirl when the vorticity is sharply concentrated. In particular, we consider N disjoint vortex rings of size ε and intensity of the order of | log ε| - 1. We show that in the limit ε→ 0 , when the density of vorticity becomes very large, the movement of each vortex ring converges to a simple translation, at least for a small but positive time.
Time Evolution of Concentrated Vortex Rings / Butta', P.; Marchioro, C.. - In: JOURNAL OF MATHEMATICAL FLUID MECHANICS. - ISSN 1422-6928. - 22:2(2020), pp. 1-21. [10.1007/s00021-020-0482-x]
Time Evolution of Concentrated Vortex Rings
Butta' P.
;Marchioro C.
2020
Abstract
We study the time evolution of an incompressible fluid with axisymmetry without swirl when the vorticity is sharply concentrated. In particular, we consider N disjoint vortex rings of size ε and intensity of the order of | log ε| - 1. We show that in the limit ε→ 0 , when the density of vorticity becomes very large, the movement of each vortex ring converges to a simple translation, at least for a small but positive time.File | Dimensione | Formato | |
---|---|---|---|
Buttà_Time-evolution_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
477.25 kB
Formato
Adobe PDF
|
477.25 kB | Adobe PDF | Contatta l'autore |
Buttà_preprint_Time-evolution_2020.pdf
accesso aperto
Note: Preprint depositato sugli archivi arXiv.org prima della sottomissione alla rivista
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
297.62 kB
Formato
Adobe PDF
|
297.62 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.