We study the time evolution of an incompressible fluid with axisymmetry without swirl when the vorticity is sharply concentrated. In particular, we consider N disjoint vortex rings of size ε and intensity of the order of | log ε| - 1. We show that in the limit ε→ 0 , when the density of vorticity becomes very large, the movement of each vortex ring converges to a simple translation, at least for a small but positive time.

Time Evolution of Concentrated Vortex Rings / Butta', P.; Marchioro, C.. - In: JOURNAL OF MATHEMATICAL FLUID MECHANICS. - ISSN 1422-6928. - 22:2(2020), pp. 1-21. [10.1007/s00021-020-0482-x]

Time Evolution of Concentrated Vortex Rings

Butta' P.
;
Marchioro C.
2020

Abstract

We study the time evolution of an incompressible fluid with axisymmetry without swirl when the vorticity is sharply concentrated. In particular, we consider N disjoint vortex rings of size ε and intensity of the order of | log ε| - 1. We show that in the limit ε→ 0 , when the density of vorticity becomes very large, the movement of each vortex ring converges to a simple translation, at least for a small but positive time.
2020
Concentration approximation; incompressible Euler flow; vortex rings
01 Pubblicazione su rivista::01a Articolo in rivista
Time Evolution of Concentrated Vortex Rings / Butta', P.; Marchioro, C.. - In: JOURNAL OF MATHEMATICAL FLUID MECHANICS. - ISSN 1422-6928. - 22:2(2020), pp. 1-21. [10.1007/s00021-020-0482-x]
File allegati a questo prodotto
File Dimensione Formato  
Buttà_Time-evolution_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 477.25 kB
Formato Adobe PDF
477.25 kB Adobe PDF   Contatta l'autore
Buttà_preprint_Time-evolution_2020.pdf

accesso aperto

Note: Preprint depositato sugli archivi arXiv.org prima della sottomissione alla rivista
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 297.62 kB
Formato Adobe PDF
297.62 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1389011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact