We show that the convergence, as $p\to\infty$, of the solution $u_p$ of the Dirichlet problem for $-\Delta_p u(x)=f(x)$ in a bounded domain $\Omega\subset{\hbox{\bf R}}^n$ with zero-Dirichlet boundary condition and with continuous $f$ in the following cases: (i) one-dimensional case, radial cases; (ii) the case of no balanced family; and (iii) two cases with vanishing integral. We also give some properties of the maximizers for the functional $\int_\Omega f(x)v(x)\d x$ in the space of functions $v\in C(\overline\Omega)\cap W^{1,\infty}(\Omega)$ satisfying $v|_{\partial\Omega}=0$ and $\|Dv\|_{L^\infty(\Omega)}\leq 1$.

Limits of Solutions of p-Laplace Equations as p Goes to Infinity and Related Variational Problems / H., Ishii; Loreti, Paola. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 37:(2005), pp. 411-437. [10.1137/S0036141004432827]

Limits of Solutions of p-Laplace Equations as p Goes to Infinity and Related Variational Problems

LORETI, Paola
2005

Abstract

We show that the convergence, as $p\to\infty$, of the solution $u_p$ of the Dirichlet problem for $-\Delta_p u(x)=f(x)$ in a bounded domain $\Omega\subset{\hbox{\bf R}}^n$ with zero-Dirichlet boundary condition and with continuous $f$ in the following cases: (i) one-dimensional case, radial cases; (ii) the case of no balanced family; and (iii) two cases with vanishing integral. We also give some properties of the maximizers for the functional $\int_\Omega f(x)v(x)\d x$ in the space of functions $v\in C(\overline\Omega)\cap W^{1,\infty}(\Omega)$ satisfying $v|_{\partial\Omega}=0$ and $\|Dv\|_{L^\infty(\Omega)}\leq 1$.
2005
p-Laplace equation; asymptotic behavior; variational problem; $L^\infty$ variational problem; eikonal equation; $\infty$-Laplace equation
01 Pubblicazione su rivista::01a Articolo in rivista
Limits of Solutions of p-Laplace Equations as p Goes to Infinity and Related Variational Problems / H., Ishii; Loreti, Paola. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 37:(2005), pp. 411-437. [10.1137/S0036141004432827]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/13878
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact