Robots assisting humans with some specific tasks have been demonstrated on several occasions. A further challenging idea is to anticipate human needs by mining the future demand from the next action prediction. To trigger this anticipation mechanism a robot has to recognize what the human is doing now, foresee what the human will do next, and from their connection guesstimating what to do to help. We propose here a deep network combining the essential components of this challenging process leading to foreseeing the help that can be provided in human-robot collaboration.

Help by Predicting What to Do / Alati, E.; Mauro, L.; Ntouskos, V.; Pirri, F.. - (2019), pp. 1930-1934. (Intervento presentato al convegno 26th IEEE International Conference on Image Processing, ICIP 2019 tenutosi a Taipei; Taiwan) [10.1109/ICIP.2019.8803155].

Help by Predicting What to Do

Alati E.
;
Mauro L.
;
Ntouskos V.
;
Pirri F.
2019

Abstract

Robots assisting humans with some specific tasks have been demonstrated on several occasions. A further challenging idea is to anticipate human needs by mining the future demand from the next action prediction. To trigger this anticipation mechanism a robot has to recognize what the human is doing now, foresee what the human will do next, and from their connection guesstimating what to do to help. We propose here a deep network combining the essential components of this challenging process leading to foreseeing the help that can be provided in human-robot collaboration.
2019
26th IEEE International Conference on Image Processing, ICIP 2019
action recognition; activity recognition; Deep learning; human-robot collaboration; need for help recognition; scene segmentation
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Help by Predicting What to Do / Alati, E.; Mauro, L.; Ntouskos, V.; Pirri, F.. - (2019), pp. 1930-1934. (Intervento presentato al convegno 26th IEEE International Conference on Image Processing, ICIP 2019 tenutosi a Taipei; Taiwan) [10.1109/ICIP.2019.8803155].
File allegati a questo prodotto
File Dimensione Formato  
Alati_Help-by-Predicting_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1385665
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 1
social impact