We prove the existence of a new type of solutions to a nonlinear Schr ̈odinger system. These solutions, which we call multi-speeds solitary waves, behave at large time as a couple of scalar solitary waves traveling at different speeds. The proof relies on the construction of approximations of the multi-speeds solitary waves by solving the system backward in time and using energy methods to obtain uniform estimates.

Multi-speeds solitary waves solutions for nonlinear Schrödinger systems / Ianni, I; Le Coz, S. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - 89:2(2014), pp. 623-639. [10.1112/jlms/jdt083]

Multi-speeds solitary waves solutions for nonlinear Schrödinger systems

IANNI I;
2014

Abstract

We prove the existence of a new type of solutions to a nonlinear Schr ̈odinger system. These solutions, which we call multi-speeds solitary waves, behave at large time as a couple of scalar solitary waves traveling at different speeds. The proof relies on the construction of approximations of the multi-speeds solitary waves by solving the system backward in time and using energy methods to obtain uniform estimates.
2014
Nonlinear Schroedinger systems, solitary waves
01 Pubblicazione su rivista::01a Articolo in rivista
Multi-speeds solitary waves solutions for nonlinear Schrödinger systems / Ianni, I; Le Coz, S. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - 89:2(2014), pp. 623-639. [10.1112/jlms/jdt083]
File allegati a questo prodotto
File Dimensione Formato  
Ianni_Multispeedsolitary_2014.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 221.73 kB
Formato Adobe PDF
221.73 kB Adobe PDF   Contatta l'autore
Ianni_Multispeedsolitary_2014.pdf

accesso aperto

Note: https://doi.org/10.1112/jlms/jdt083
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 356.21 kB
Formato Adobe PDF
356.21 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1384983
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact