We study the orbital stability of single-spike semiclassical standing waves of a non-homogeneous in space nonlinear Schroedinger- Poisson equation. When the nonlinearity is subcritical or supercritical we prove that the nonlocal Poisson-term does not influence the stability of standing waves, whereas in the critical case it may create instability if its value at the concentration point of the spike is too large. The proofs are based on the study of the spectral properties of a linearized operator and on the analysis of a slope condition. Our main tools are perturbation methods and asymptotic expansion formulas.

Orbital stability of standing waves of a semiclassical nonlinear Schrödinger-Poisson equation / Ianni, I; LE COZ, Stefan. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - 14:(2009), pp. 717-748.

Orbital stability of standing waves of a semiclassical nonlinear Schrödinger-Poisson equation

IANNI I;
2009

Abstract

We study the orbital stability of single-spike semiclassical standing waves of a non-homogeneous in space nonlinear Schroedinger- Poisson equation. When the nonlinearity is subcritical or supercritical we prove that the nonlocal Poisson-term does not influence the stability of standing waves, whereas in the critical case it may create instability if its value at the concentration point of the spike is too large. The proofs are based on the study of the spectral properties of a linearized operator and on the analysis of a slope condition. Our main tools are perturbation methods and asymptotic expansion formulas.
2009
Schroedinger equation; orbital stability.
01 Pubblicazione su rivista::01a Articolo in rivista
Orbital stability of standing waves of a semiclassical nonlinear Schrödinger-Poisson equation / Ianni, I; LE COZ, Stefan. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - 14:(2009), pp. 717-748.
File allegati a questo prodotto
File Dimensione Formato  
Ianni_OrbitalStabillity_2009.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 271.24 kB
Formato Adobe PDF
271.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Ianni_preprint_OrbitalStability_2009.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 373.18 kB
Formato Adobe PDF
373.18 kB Adobe PDF Visualizza/Apri PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1384977
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact