We study the orbital stability of single-spike semiclassical standing waves of a non-homogeneous in space nonlinear Schroedinger- Poisson equation. When the nonlinearity is subcritical or supercritical we prove that the nonlocal Poisson-term does not influence the stability of standing waves, whereas in the critical case it may create instability if its value at the concentration point of the spike is too large. The proofs are based on the study of the spectral properties of a linearized operator and on the analysis of a slope condition. Our main tools are perturbation methods and asymptotic expansion formulas.
Orbital stability of standing waves of a semiclassical nonlinear Schrödinger-Poisson equation / Ianni, I; LE COZ, Stefan. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - 14:(2009), pp. 717-748.
Orbital stability of standing waves of a semiclassical nonlinear Schrödinger-Poisson equation
IANNI I;
2009
Abstract
We study the orbital stability of single-spike semiclassical standing waves of a non-homogeneous in space nonlinear Schroedinger- Poisson equation. When the nonlinearity is subcritical or supercritical we prove that the nonlocal Poisson-term does not influence the stability of standing waves, whereas in the critical case it may create instability if its value at the concentration point of the spike is too large. The proofs are based on the study of the spectral properties of a linearized operator and on the analysis of a slope condition. Our main tools are perturbation methods and asymptotic expansion formulas.File | Dimensione | Formato | |
---|---|---|---|
Ianni_OrbitalStabillity_2009.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
271.24 kB
Formato
Adobe PDF
|
271.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Ianni_preprint_OrbitalStability_2009.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
373.18 kB
Formato
Adobe PDF
|
373.18 kB | Adobe PDF | Visualizza/Apri PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.