We present an approach based on GATE (General Architecture for Text Engineering) for the automatic population of ontologies from text documents. We describe some experimental results, which are encouraging in terms of extracted correct instances of the ontology. We then focus on a phase of our pipeline and discuss a variant thereof, which aims at reducing the manual effort needed to generate pre-defined dictionaries used in document annotation. Our additional experiments show promising results also in this case.
Ontology Population for Open-Source Intelligence / Ganino, G.; Lembo, D.; Mecella, M.; Scafoglieri, F.. - 2161:(2018). ((Intervento presentato al convegno 26th Italian Symposium on Advanced Database Systems, SEBD 2018 tenutosi a Castellaneta Marina (Taranto); Italy.
Ontology Population for Open-Source Intelligence
Ganino G.
;Lembo D.
;Mecella M.
;Scafoglieri F.
2018
Abstract
We present an approach based on GATE (General Architecture for Text Engineering) for the automatic population of ontologies from text documents. We describe some experimental results, which are encouraging in terms of extracted correct instances of the ontology. We then focus on a phase of our pipeline and discuss a variant thereof, which aims at reducing the manual effort needed to generate pre-defined dictionaries used in document annotation. Our additional experiments show promising results also in this case.File | Dimensione | Formato | |
---|---|---|---|
Ganino_Ontology_2018.pdf
accesso aperto
Note: http://ceur-ws.org/Vol-2161/
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
117.66 kB
Formato
Adobe PDF
|
117.66 kB | Adobe PDF | Visualizza/Apri PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.