Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by the progressive loss of axonal myelin in several areas of the central nervous system (CNS) that is responsible for clinical symptoms such as muscle spasms, optic neuritis, and paralysis. The progress made in more than one decade of research in animal models of MS for clarifying the pathophysiology of MS disease validated the concept that MS is an autoimmune inflammatory disorder caused by the recruitment in the CNS of self-reactive lymphocytes, mainly CD4+ T cells. Indeed, high levels of T helper (Th) cells and related cytokines and chemokines have been found in CNS lesions and in cerebrospinal fluid (CSF) of MS patients, thus contributing to the breakdown of the blood-brain barrier (BBB), the activation of resident astrocytes and microglia, and finally the outcome of neuroinflammation. To date, several types of Th cells have been discovered and designated according to the secreted lineage-defining cytokines. Interestingly, Th1, Th17, Th1-like Th17, Th9, and Th22 have been associated with MS. In this review, we discuss the role and interplay of different Th cell subpopulations and their lineage-defining cytokines in modulating the inflammatory responses in MS and the approved as well as the novel therapeutic approaches targeting T lymphocytes in the treatment of the disease.
T Helper Cells: The Modulators of Inflammation in Multiple Sclerosis / Kunkl, Martina; Frascolla, Simone; Amormino, Carola; Volpe, Elisabetta; Tuosto, Loretta. - In: CELLS. - ISSN 2073-4409. - 9:2(2020), p. 482. [10.3390/cells9020482]
T Helper Cells: The Modulators of Inflammation in Multiple Sclerosis
Kunkl, MartinaPrimo
Investigation
;Amormino, Carola;Tuosto, Loretta
Ultimo
Writing – Original Draft Preparation
2020
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by the progressive loss of axonal myelin in several areas of the central nervous system (CNS) that is responsible for clinical symptoms such as muscle spasms, optic neuritis, and paralysis. The progress made in more than one decade of research in animal models of MS for clarifying the pathophysiology of MS disease validated the concept that MS is an autoimmune inflammatory disorder caused by the recruitment in the CNS of self-reactive lymphocytes, mainly CD4+ T cells. Indeed, high levels of T helper (Th) cells and related cytokines and chemokines have been found in CNS lesions and in cerebrospinal fluid (CSF) of MS patients, thus contributing to the breakdown of the blood-brain barrier (BBB), the activation of resident astrocytes and microglia, and finally the outcome of neuroinflammation. To date, several types of Th cells have been discovered and designated according to the secreted lineage-defining cytokines. Interestingly, Th1, Th17, Th1-like Th17, Th9, and Th22 have been associated with MS. In this review, we discuss the role and interplay of different Th cell subpopulations and their lineage-defining cytokines in modulating the inflammatory responses in MS and the approved as well as the novel therapeutic approaches targeting T lymphocytes in the treatment of the disease.File | Dimensione | Formato | |
---|---|---|---|
Kunkl_T Helper_2020.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
671.19 kB
Formato
Adobe PDF
|
671.19 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.