Background: Blepharospasm (BSP) is a type of focal dystonia characterized by involuntary orbicularis oculi spasms that are usually bilateral, synchronous, and symmetrical. Despite strong evidence for genetic contributions to BSP, progress in the field has been constrained by small cohorts, incomplete penetrance, and late age of onset. Although several genetic etiologies for dystonia have been identified through whole-exome sequencing (WES), none of these are characteristically associated with BSP as a singular or predominant manifestation. Methods: We performed WES on 31 subjects from 21 independent pedigrees with BSP. The strongest candidate sequence variants derived from in silico analyses were confirmed with bidirectional Sanger sequencing and subjected to cosegregation analysis. Results: Cosegregating deleterious variants (GRCH37/hg19) in CACNA1A (NM_001127222.1: c.7261_7262delinsGT, p.Pro2421Val), REEP4 (NM_025232.3: c.109C>T, p.Arg37Trp), TOR2A (NM_130459.3: c.568C>T, p.Arg190Cys), and ATP2A3 (NM_005173.3: c.1966C>T, p.Arg656Cys) were identified in four independent multigenerational pedigrees. Deleterious variants in HS1BP3 (NM_022460.3: c.94C>A, p.Gly32Cys) and GNA14 (NM_004297.3: c.989_990del, p.Thr330ArgfsTer67) were identified in a father and son with segmental cranio-cervical dystonia first manifest as BSP. Deleterious variants in DNAH17, TRPV4, CAPN11, VPS13C, UNC13B, SPTBN4, MYOD1, and MRPL15 were found in two or more independent pedigrees. To our knowledge, none of these genes have previously been associated with isolated BSP, although other CACNA1A mutations have been associated with both positive and negative motor disorders including ataxia, episodic ataxia, hemiplegic migraine, and dystonia. Conclusions: Our WES datasets provide a platform for future studies of BSP genetics which will demand careful consideration of incomplete penetrance, pleiotropy, population stratification, and oligogenic inheritance patterns.

Whole-exome sequencing for variant discovery in blepharospasm / Tian, J.; Vemula, S. R.; Xiao, J.; Valente, E. M.; Defazio, G.; Petrucci, S.; Gigante, A. F.; Rudzinska-Bar, M.; Wszolek, Z. K.; Kennelly, K. D.; Uitti, R. J.; van Gerpen, J. A.; Hedera, P.; Trimble, E. J.; Ledoux, M. S.. - In: MOLECULAR GENETICS & GENOMIC MEDICINE. - ISSN 2324-9269. - 6:4(2018), pp. 601-626. [10.1002/mgg3.411]

Whole-exome sequencing for variant discovery in blepharospasm

Petrucci S.;
2018

Abstract

Background: Blepharospasm (BSP) is a type of focal dystonia characterized by involuntary orbicularis oculi spasms that are usually bilateral, synchronous, and symmetrical. Despite strong evidence for genetic contributions to BSP, progress in the field has been constrained by small cohorts, incomplete penetrance, and late age of onset. Although several genetic etiologies for dystonia have been identified through whole-exome sequencing (WES), none of these are characteristically associated with BSP as a singular or predominant manifestation. Methods: We performed WES on 31 subjects from 21 independent pedigrees with BSP. The strongest candidate sequence variants derived from in silico analyses were confirmed with bidirectional Sanger sequencing and subjected to cosegregation analysis. Results: Cosegregating deleterious variants (GRCH37/hg19) in CACNA1A (NM_001127222.1: c.7261_7262delinsGT, p.Pro2421Val), REEP4 (NM_025232.3: c.109C>T, p.Arg37Trp), TOR2A (NM_130459.3: c.568C>T, p.Arg190Cys), and ATP2A3 (NM_005173.3: c.1966C>T, p.Arg656Cys) were identified in four independent multigenerational pedigrees. Deleterious variants in HS1BP3 (NM_022460.3: c.94C>A, p.Gly32Cys) and GNA14 (NM_004297.3: c.989_990del, p.Thr330ArgfsTer67) were identified in a father and son with segmental cranio-cervical dystonia first manifest as BSP. Deleterious variants in DNAH17, TRPV4, CAPN11, VPS13C, UNC13B, SPTBN4, MYOD1, and MRPL15 were found in two or more independent pedigrees. To our knowledge, none of these genes have previously been associated with isolated BSP, although other CACNA1A mutations have been associated with both positive and negative motor disorders including ataxia, episodic ataxia, hemiplegic migraine, and dystonia. Conclusions: Our WES datasets provide a platform for future studies of BSP genetics which will demand careful consideration of incomplete penetrance, pleiotropy, population stratification, and oligogenic inheritance patterns.
2018
blepharospasm; cerebellum; dystonia; Purkinje cell; whole-exome sequencing
01 Pubblicazione su rivista::01a Articolo in rivista
Whole-exome sequencing for variant discovery in blepharospasm / Tian, J.; Vemula, S. R.; Xiao, J.; Valente, E. M.; Defazio, G.; Petrucci, S.; Gigante, A. F.; Rudzinska-Bar, M.; Wszolek, Z. K.; Kennelly, K. D.; Uitti, R. J.; van Gerpen, J. A.; Hedera, P.; Trimble, E. J.; Ledoux, M. S.. - In: MOLECULAR GENETICS & GENOMIC MEDICINE. - ISSN 2324-9269. - 6:4(2018), pp. 601-626. [10.1002/mgg3.411]
File allegati a questo prodotto
File Dimensione Formato  
Tian_Whole-Exome_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 5.36 MB
Formato Adobe PDF
5.36 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1383115
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 16
social impact