We present a hybrid discrete-continuous extension of Reiter’s temporal situation calculus, directly inspired by hybrid systems in control theory. While keeping to the foundations of Reiter’s approach, we extend it by adding a time argument to all fluents that represent continuous change. Thereby, we ensure that change can happen not only because of actions, but also due to the passage of time. We present a systematic methodology to derive, from simple premises, a new group of axioms which specify how continuous fluents change over time within a situation. We study regression for our new hybrid action theories and demonstrate what reasoning problems can be solved. Finally, we show that our hybrid theories indeed capture hybrid automata.

Hybrid Temporal Situation Calculus / Batusov, V.; De Giacomo, G.; Soutchanski, M.. - 11489:(2019), pp. 173-185. (Intervento presentato al convegno 32nd Canadian Conference on Artificial Intelligence, Canadian AI 2019 tenutosi a Kingston; Canada) [10.1007/978-3-030-18305-9_14].

Hybrid Temporal Situation Calculus

De Giacomo G.;Soutchanski M.
2019

Abstract

We present a hybrid discrete-continuous extension of Reiter’s temporal situation calculus, directly inspired by hybrid systems in control theory. While keeping to the foundations of Reiter’s approach, we extend it by adding a time argument to all fluents that represent continuous change. Thereby, we ensure that change can happen not only because of actions, but also due to the passage of time. We present a systematic methodology to derive, from simple premises, a new group of axioms which specify how continuous fluents change over time within a situation. We study regression for our new hybrid action theories and demonstrate what reasoning problems can be solved. Finally, we show that our hybrid theories indeed capture hybrid automata.
2019
32nd Canadian Conference on Artificial Intelligence, Canadian AI 2019
Hybrid systems; Situation calculus; Temporal reasoning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Hybrid Temporal Situation Calculus / Batusov, V.; De Giacomo, G.; Soutchanski, M.. - 11489:(2019), pp. 173-185. (Intervento presentato al convegno 32nd Canadian Conference on Artificial Intelligence, Canadian AI 2019 tenutosi a Kingston; Canada) [10.1007/978-3-030-18305-9_14].
File allegati a questo prodotto
File Dimensione Formato  
Batusov_Hybrid_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 288.92 kB
Formato Adobe PDF
288.92 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1382479
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact