We study existence, uniqueness and regularity properties of classical solutions to viscous Hamilton–Jacobi equations with Caputo time-fractional derivative. Our study relies on a combination of a gradient bound for the time-fractional Hamilton–Jacobi equation obtained via nonlinear adjoint method and sharp estimates in Sobolev and Hölder spaces for the corresponding linear problem.

Existence and regularity results for viscous Hamilton–Jacobi equations with Caputo time-fractional derivative / Camilli, F.; Goffi, A.. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 27:2(2020). [10.1007/s00030-020-0624-0]

Existence and regularity results for viscous Hamilton–Jacobi equations with Caputo time-fractional derivative

Camilli F.;
2020

Abstract

We study existence, uniqueness and regularity properties of classical solutions to viscous Hamilton–Jacobi equations with Caputo time-fractional derivative. Our study relies on a combination of a gradient bound for the time-fractional Hamilton–Jacobi equation obtained via nonlinear adjoint method and sharp estimates in Sobolev and Hölder spaces for the corresponding linear problem.
2020
Adjoint method; Caputo derivative; Schauder estimates; Time-fractional Hamilton–Jacobi equations
01 Pubblicazione su rivista::01a Articolo in rivista
Existence and regularity results for viscous Hamilton–Jacobi equations with Caputo time-fractional derivative / Camilli, F.; Goffi, A.. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 27:2(2020). [10.1007/s00030-020-0624-0]
File allegati a questo prodotto
File Dimensione Formato  
HJ_time_frac_v2_biblio_update.pdf

accesso aperto

Note: https://link.springer.com/article/10.1007/s00030-020-0624-0
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 463.34 kB
Formato Adobe PDF
463.34 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1381686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact