The electrokinetic (EK) method is an emerging technique for soil remediation, even though a monitoring system of the contaminant removal through geophysical methods has not been developed yet. In this paper, frequency-domain time-lapse measurements are used on heavy-metal contaminated sediments for monitoring an EK remediation process in a small-scale measuring cell. Our goal is to monitor the development of the electrokinetic process within the sediment and to evaluate the total time needed for the treatment. In fact, frequency-domain electrical monitoring provides complex resistivity spectra at different time steps that can be correlated to changes in the physical properties of the sediments. We perform laboratory spectral induced polarization (SIP) measurements on different samples before, during and after the EK treatment, using different electrolyte solutions (acids and tap water), commonly employed in EK remediation. Direct-current measurements (resistivity and chargeability) were also acquired on one sample for testing the reliability of the system by a comparison with a widespread commercial instrumentation for field measurements. Results indicate that resistivity is a diagnostic parameter as long as it is linked to changes in water saturation, pH and ionic concentration and not to the percentage of metal extraction. The resistivity exhibited well-defined signatures as a function of time that changes depending on the conditioning agent and the grain size distribution. These peculiarities were used to understand the physical processes occurring within the cell and consequently to assess the effectiveness of the electrokinetic treatment. Conversely, the polarization effect was negligible using acids as conditioning agents at the electrolyte chambers. Therefore, the SIP method is not effective under these conditions, being the polarization effect significant only when tap water was used at both ends of the measuring cell. In this case, we were able to correlate changes in water saturation with the time-shift observed on relaxation time distributions (RTDs) after inversion of SIP data and to observe, using normalized chargeability, that polarization is stronger at high pH values. On these basis, resistivity is suitable to monitor the development of the remediation, to optimise the energy levels required for treatment and to assess the end time of the EK process (time when metal mobilization ends). In fact, the end time of treatment can be associated with the time at which resistivity becomes stable. This time is highly dependent on the particular working conditions and sediment grain size as demonstrated by our experiments.

Time-lapse monitoring of an electrokinetic soil remediation process through frequency-domain electrical measurements / Cercato, Michele; De Donno, Giorgio. - In: JOURNAL OF APPLIED GEOPHYSICS. - ISSN 0926-9851. - 175:(2020), pp. 1-11. [10.1016/j.jappgeo.2020.103980]

Time-lapse monitoring of an electrokinetic soil remediation process through frequency-domain electrical measurements

Cercato, Michele;De Donno, Giorgio
2020

Abstract

The electrokinetic (EK) method is an emerging technique for soil remediation, even though a monitoring system of the contaminant removal through geophysical methods has not been developed yet. In this paper, frequency-domain time-lapse measurements are used on heavy-metal contaminated sediments for monitoring an EK remediation process in a small-scale measuring cell. Our goal is to monitor the development of the electrokinetic process within the sediment and to evaluate the total time needed for the treatment. In fact, frequency-domain electrical monitoring provides complex resistivity spectra at different time steps that can be correlated to changes in the physical properties of the sediments. We perform laboratory spectral induced polarization (SIP) measurements on different samples before, during and after the EK treatment, using different electrolyte solutions (acids and tap water), commonly employed in EK remediation. Direct-current measurements (resistivity and chargeability) were also acquired on one sample for testing the reliability of the system by a comparison with a widespread commercial instrumentation for field measurements. Results indicate that resistivity is a diagnostic parameter as long as it is linked to changes in water saturation, pH and ionic concentration and not to the percentage of metal extraction. The resistivity exhibited well-defined signatures as a function of time that changes depending on the conditioning agent and the grain size distribution. These peculiarities were used to understand the physical processes occurring within the cell and consequently to assess the effectiveness of the electrokinetic treatment. Conversely, the polarization effect was negligible using acids as conditioning agents at the electrolyte chambers. Therefore, the SIP method is not effective under these conditions, being the polarization effect significant only when tap water was used at both ends of the measuring cell. In this case, we were able to correlate changes in water saturation with the time-shift observed on relaxation time distributions (RTDs) after inversion of SIP data and to observe, using normalized chargeability, that polarization is stronger at high pH values. On these basis, resistivity is suitable to monitor the development of the remediation, to optimise the energy levels required for treatment and to assess the end time of the EK process (time when metal mobilization ends). In fact, the end time of treatment can be associated with the time at which resistivity becomes stable. This time is highly dependent on the particular working conditions and sediment grain size as demonstrated by our experiments.
2020
Debye decomposition; electrical resistivity; electrokinetic treatment; SIP; soil monitoring
01 Pubblicazione su rivista::01a Articolo in rivista
Time-lapse monitoring of an electrokinetic soil remediation process through frequency-domain electrical measurements / Cercato, Michele; De Donno, Giorgio. - In: JOURNAL OF APPLIED GEOPHYSICS. - ISSN 0926-9851. - 175:(2020), pp. 1-11. [10.1016/j.jappgeo.2020.103980]
File allegati a questo prodotto
File Dimensione Formato  
Cercato_Time-lapse-monitoring_2020.pdf

solo gestori archivio

Note: articolo
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1381554
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact