The aim of this work was to investigate on the possibility to use nano-magnetite particles supported on waste biomass as heterogeneous catalyst for the production of p-aminophenol starting from a well-known pollutant, p-nitrophenol, in fixed-bed reactors. The kinetic and the thermodynamic of the process was firstly studied in batch system, subsequently a first scale-up was performed using a glass column packed with the supported catalyst. The experimental data obtained with the column were interpreted in light of a suitable dynamic model. The Langmuir-Hinshelwood mechanism well described the process, obtaining from the data fitting a surface rate kinetic constant k = 2.68 × 10−6 mol/m2·h, an adsorption equilibrium constants for PNP and BH4− species equal to 20.07 l/mol and 1.83 l/mol, at 25 °C. The Eyring equation was used to fit the apparent kintic constant variation with the temperature, to estimate thermodynamic parameters, obtaining a ΔH = − 1145.68 kJ/mol and ΔS = −315.02 kJ/K·mol. The process was then simulated in PROII environment, investigating the influence of initial PNP flowrate, NaBH4/PNP and reactor length/diameter ratios on PNP conversion, on required duty to maintain isothermal conditions and on pressure drops in the reactor.

P-aminophenol catalysed production on supported nano-magnetite particles in fixed-bed reactor. Kinetic modelling and scale-up / Vilardi, G.. - In: CHEMOSPHERE. - ISSN 0045-6535. - 250(2020). [10.1016/j.chemosphere.2020.126237]

P-aminophenol catalysed production on supported nano-magnetite particles in fixed-bed reactor. Kinetic modelling and scale-up

Vilardi G.
Primo
2020

Abstract

The aim of this work was to investigate on the possibility to use nano-magnetite particles supported on waste biomass as heterogeneous catalyst for the production of p-aminophenol starting from a well-known pollutant, p-nitrophenol, in fixed-bed reactors. The kinetic and the thermodynamic of the process was firstly studied in batch system, subsequently a first scale-up was performed using a glass column packed with the supported catalyst. The experimental data obtained with the column were interpreted in light of a suitable dynamic model. The Langmuir-Hinshelwood mechanism well described the process, obtaining from the data fitting a surface rate kinetic constant k = 2.68 × 10−6 mol/m2·h, an adsorption equilibrium constants for PNP and BH4− species equal to 20.07 l/mol and 1.83 l/mol, at 25 °C. The Eyring equation was used to fit the apparent kintic constant variation with the temperature, to estimate thermodynamic parameters, obtaining a ΔH = − 1145.68 kJ/mol and ΔS = −315.02 kJ/K·mol. The process was then simulated in PROII environment, investigating the influence of initial PNP flowrate, NaBH4/PNP and reactor length/diameter ratios on PNP conversion, on required duty to maintain isothermal conditions and on pressure drops in the reactor.
File allegati a questo prodotto
File Dimensione Formato  
Vilardi_P-aminophenol-catalysed_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.33 MB
Formato Adobe PDF
2.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/1373702
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 18
social impact