An algorithm is proposed that allows to estimate the self-similarity parameter of a fractal k-dimensional stochastic process. Our technique greatly improves the processing times of a distribution-based estimator, that – introduced years ago – efficiently worked only in the one-dimensional distribution case.
Self-Similarity Parameter Estimation for k-dimensional Processes / Bianchi, S.; Palazzo, A. M.; Pantanella, A.; Pianese, A.. - In: INTERNATIONAL JOURNAL OF COMPUTER THEORY AND ENGINEERING. - ISSN 1793-8201. - 5:2(2013), pp. 302-306. [10.7763/IJCTE.2013.V5.698]
Self-Similarity Parameter Estimation for k-dimensional Processes
S. Bianchi;
2013
Abstract
An algorithm is proposed that allows to estimate the self-similarity parameter of a fractal k-dimensional stochastic process. Our technique greatly improves the processing times of a distribution-based estimator, that – introduced years ago – efficiently worked only in the one-dimensional distribution case.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Bianchi_Self-Similarity-Parameter_2013.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.65 MB
Formato
Adobe PDF
|
1.65 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.