We have analyzed at both low and high resolution the distribution of nucleosomes over the Saccharomyces cerevisiae ADH2 promoter region in its chromosomal location, both under repressing (high-glucose) conditions and during derepression. Enzymatic treatments (micrococcal nuclease and restriction endonucleases) were used to probe the in vivo chromatin structure during ADH2 gene activation. Under glucose-repressed conditions, the ADH2 promoter was bound by a precise array of nucleosomes, the principal ones positioned at the RNA initiation sites (nucleosome +1), at the TATA box (nucleosome -1), and upstream of the ADR1-binding site (UAS1) (nucleosome -2). The UAS1 sequence and the adjacent UAS2 sequence constituted a nucleosome-free region. Nucleosomes -1 and +1 were destabilized soon after depletion of glucose and had become so before the appearance of ADH2 mRNA. When the transcription rate was high, nucleosomes -2 and +2 also underwent rearrangement. When spheroplasts were prepared from cells grown in minimal medium, detection of this chromatin remodeling required the addition of a small amount of glucose. Cells lacking the ADR1 protein did not display any of these chromatin modifications upon glucose depletion. Since the UAS1 sequence to which Adr1p binds is located immediately upstream of nucleosome -1, Adr1p is presumably required for destabilization of this nucleosome and for aiding the TATA-box accessibility to the transcription machinery.

Chromatin remodelling during S. cerevisiae ADH2 gene activation / Verdone, Loredana; Camilloni, Giorgio; DI MAURO, Ernesto; Caserta, M.. - In: MOLECULAR AND CELLULAR BIOLOGY. - ISSN 0270-7306. - STAMPA. - 16:5(1996), pp. 1978-1988.

Chromatin remodelling during S. cerevisiae ADH2 gene activation

VERDONE, Loredana;CAMILLONI, Giorgio;DI MAURO, Ernesto;
1996

Abstract

We have analyzed at both low and high resolution the distribution of nucleosomes over the Saccharomyces cerevisiae ADH2 promoter region in its chromosomal location, both under repressing (high-glucose) conditions and during derepression. Enzymatic treatments (micrococcal nuclease and restriction endonucleases) were used to probe the in vivo chromatin structure during ADH2 gene activation. Under glucose-repressed conditions, the ADH2 promoter was bound by a precise array of nucleosomes, the principal ones positioned at the RNA initiation sites (nucleosome +1), at the TATA box (nucleosome -1), and upstream of the ADR1-binding site (UAS1) (nucleosome -2). The UAS1 sequence and the adjacent UAS2 sequence constituted a nucleosome-free region. Nucleosomes -1 and +1 were destabilized soon after depletion of glucose and had become so before the appearance of ADH2 mRNA. When the transcription rate was high, nucleosomes -2 and +2 also underwent rearrangement. When spheroplasts were prepared from cells grown in minimal medium, detection of this chromatin remodeling required the addition of a small amount of glucose. Cells lacking the ADR1 protein did not display any of these chromatin modifications upon glucose depletion. Since the UAS1 sequence to which Adr1p binds is located immediately upstream of nucleosome -1, Adr1p is presumably required for destabilization of this nucleosome and for aiding the TATA-box accessibility to the transcription machinery.
1996
01 Pubblicazione su rivista::01a Articolo in rivista
Chromatin remodelling during S. cerevisiae ADH2 gene activation / Verdone, Loredana; Camilloni, Giorgio; DI MAURO, Ernesto; Caserta, M.. - In: MOLECULAR AND CELLULAR BIOLOGY. - ISSN 0270-7306. - STAMPA. - 16:5(1996), pp. 1978-1988.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/13677
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 42
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 85
social impact