The analysis of high resolution morpho–bathymetric data on the Calabro Tyrrhenian continental margin (Southern Italy) enabled us to identify several morphological features originated by mass–wasting processes, including shallow gullies, shelf–indenting canyons and landslides. Specifically, we focus our attention on submarine landslides occurring from the coast down to −1700 m and affecting variable areas from thousands of square meters up to few tens of square kilometers. These landslides also show a large variability of geomorphic features which seems strictly related to the physiographic/morphological domains where the landslide formed. Tectonically–controlled scarps and canyon flanks are typically characterized by several coalescent and nested landslides, with diameters ranging from hundreds to a few thousands of meters. Canyon headwalls are commonly characterized by a cauliflower shape due to an array of small (diameters of tens of meters) and coalescent scars. In all these sectors, disintegrative–like landslides dominate and are generally characterized by a marked retrogressive evolution, as demonstrated by their morphology and comparison of repeated bathymetric surveys at the canyon headwall. Only in the lower part of tectonically–controlled scarps, a few cohesive–like and isolated landslides are present, indicating the main role of slope gradients and height drop in controlling the post–failure behavior of the mobilized material. Open slopes are generally characterized by large–scale (diameters of thousands of meters) and isolated scars, with associated landslide deposits. A peculiar case is represented by the Capo Vaticano Scar Complex that affected an area of about 18 km2 and is characterized by an impressive variability of landslide morphologies, varying also at short distance. The large extent and variability of such scar complex are thought to be associated with the occurrence of a mixed contouritic–turbidite system. By integrating the high–resolution morpho–bathymetric dataset with the results of previous studies, we discuss the main factors controlling the variability in size and morphology of submarine landslides developed in a tectonically–controlled setting and provide preliminary considerations on their potential geohazard in a densely populated coastal area.

Morphological variability of submarine mass movements in the tectonically–controlled calabro–Tyrrhenian continental margin (Southern Italy) / Casalbore, D.; Bosman, A.; Casas, D.; Chiocci, F.; Martorelli, E.; Ridente, D.. - In: GEOSCIENCES. - ISSN 2076-3263. - 9:1(2019). [10.3390/geosciences9010043]

Morphological variability of submarine mass movements in the tectonically–controlled calabro–Tyrrhenian continental margin (Southern Italy)

Casalbore D.
;
Chiocci F.;
2019

Abstract

The analysis of high resolution morpho–bathymetric data on the Calabro Tyrrhenian continental margin (Southern Italy) enabled us to identify several morphological features originated by mass–wasting processes, including shallow gullies, shelf–indenting canyons and landslides. Specifically, we focus our attention on submarine landslides occurring from the coast down to −1700 m and affecting variable areas from thousands of square meters up to few tens of square kilometers. These landslides also show a large variability of geomorphic features which seems strictly related to the physiographic/morphological domains where the landslide formed. Tectonically–controlled scarps and canyon flanks are typically characterized by several coalescent and nested landslides, with diameters ranging from hundreds to a few thousands of meters. Canyon headwalls are commonly characterized by a cauliflower shape due to an array of small (diameters of tens of meters) and coalescent scars. In all these sectors, disintegrative–like landslides dominate and are generally characterized by a marked retrogressive evolution, as demonstrated by their morphology and comparison of repeated bathymetric surveys at the canyon headwall. Only in the lower part of tectonically–controlled scarps, a few cohesive–like and isolated landslides are present, indicating the main role of slope gradients and height drop in controlling the post–failure behavior of the mobilized material. Open slopes are generally characterized by large–scale (diameters of thousands of meters) and isolated scars, with associated landslide deposits. A peculiar case is represented by the Capo Vaticano Scar Complex that affected an area of about 18 km2 and is characterized by an impressive variability of landslide morphologies, varying also at short distance. The large extent and variability of such scar complex are thought to be associated with the occurrence of a mixed contouritic–turbidite system. By integrating the high–resolution morpho–bathymetric dataset with the results of previous studies, we discuss the main factors controlling the variability in size and morphology of submarine landslides developed in a tectonically–controlled setting and provide preliminary considerations on their potential geohazard in a densely populated coastal area.
2019
canyon; continental slope; Contourite deposits; fault escarpments; landslide scars; multibeam
01 Pubblicazione su rivista::01a Articolo in rivista
Morphological variability of submarine mass movements in the tectonically–controlled calabro–Tyrrhenian continental margin (Southern Italy) / Casalbore, D.; Bosman, A.; Casas, D.; Chiocci, F.; Martorelli, E.; Ridente, D.. - In: GEOSCIENCES. - ISSN 2076-3263. - 9:1(2019). [10.3390/geosciences9010043]
File allegati a questo prodotto
File Dimensione Formato  
Casalbore_Morphological_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.94 MB
Formato Adobe PDF
3.94 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1367191
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact