We study the fluctuations of the outer domain of Hastings–Levitov clusters in the small particle limit. These are shown to be given by a continuous Gaussian process F taking values in the space of holomorphic functions on |z|>1 , of which we provide an explicit construction. The boundary values W of F are shown to perform an Ornstein–Uhlenbeck process on the space of distributions on the unit circle T, which can be described as the solution to the stochastic fractional heat equation ∂/∂W(t,ϑ)=-(-Δ)1/2W(t,ϑ)+√2ξ(t,ϑ),where Δ denotes the Laplace operator acting on the spatial component, and ξ(t, ϑ) is a space-time white noise. As a consequence we find that, when the cluster is left to grow indefinitely, the boundary process W converges to a log-correlated fractional Gaussian field, which can be realised as (-Δ) -1/4W, for W complex white noise on T.

Fluctuation results for Hastings–Levitov planar growth / Silvestri, V.. - In: PROBABILITY THEORY AND RELATED FIELDS. - ISSN 0178-8051. - 167:1-2(2017), pp. 417-460. [10.1007/s00440-015-0688-7]

Fluctuation results for Hastings–Levitov planar growth

Silvestri V.
2017

Abstract

We study the fluctuations of the outer domain of Hastings–Levitov clusters in the small particle limit. These are shown to be given by a continuous Gaussian process F taking values in the space of holomorphic functions on |z|>1 , of which we provide an explicit construction. The boundary values W of F are shown to perform an Ornstein–Uhlenbeck process on the space of distributions on the unit circle T, which can be described as the solution to the stochastic fractional heat equation ∂/∂W(t,ϑ)=-(-Δ)1/2W(t,ϑ)+√2ξ(t,ϑ),where Δ denotes the Laplace operator acting on the spatial component, and ξ(t, ϑ) is a space-time white noise. As a consequence we find that, when the cluster is left to grow indefinitely, the boundary process W converges to a log-correlated fractional Gaussian field, which can be realised as (-Δ) -1/4W, for W complex white noise on T.
2017
30C85; 60F17; 60G60
01 Pubblicazione su rivista::01a Articolo in rivista
Fluctuation results for Hastings–Levitov planar growth / Silvestri, V.. - In: PROBABILITY THEORY AND RELATED FIELDS. - ISSN 0178-8051. - 167:1-2(2017), pp. 417-460. [10.1007/s00440-015-0688-7]
File allegati a questo prodotto
File Dimensione Formato  
Silvestri_Fluctuation_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Contatta l'autore
Silvestri_preprint_Fluctuation_2017.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 2.73 MB
Formato Adobe PDF
2.73 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1363974
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact