Let (X, h) be a compact and irreducible Hermitian complex space of complex dimension v > 1. In this paper we show that the Friedrichs extension of both the Laplace-Beltrami operator and the Hodge-Kodaira Laplacian acting on functions has discrete spectrum. Moreover, we provide some estimates for the growth of the corresponding eigenvalues, and we use these estimates to deduce that the associated heat operators are trace class. Finally we give various applications to the Hodge-Dolbeault operator and to the Hodge-Kodaira Laplacian in the setting of Hermitian complex spaces of complex dimension 2.
On the Laplace-Beltrami operator on compact complex spaces / Bei, F.. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - 372:12(2019), pp. 8477-8505. [10.1090/tran/7848]
On the Laplace-Beltrami operator on compact complex spaces
Bei F.
2019
Abstract
Let (X, h) be a compact and irreducible Hermitian complex space of complex dimension v > 1. In this paper we show that the Friedrichs extension of both the Laplace-Beltrami operator and the Hodge-Kodaira Laplacian acting on functions has discrete spectrum. Moreover, we provide some estimates for the growth of the corresponding eigenvalues, and we use these estimates to deduce that the associated heat operators are trace class. Finally we give various applications to the Hodge-Dolbeault operator and to the Hodge-Kodaira Laplacian in the setting of Hermitian complex spaces of complex dimension 2.File | Dimensione | Formato | |
---|---|---|---|
Bei_postprint_On-the-Laplace_2019.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
485.87 kB
Formato
Adobe PDF
|
485.87 kB | Adobe PDF | |
Bei_On-the-Laplace_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
394.62 kB
Formato
Adobe PDF
|
394.62 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.