A reformulation of the Hodge index theorem within the framework of Atiyah’s L2-index theory is provided. More precisely, given a compact Kähler manifold (M, h) of even complex dimension 2m, we prove that σ(M)=∑p,q=02m(-1)ph(2),Γp,q(M)where σ(M) is the signature of M and h(2),Γp,q(M) are the L2-Hodge numbers of M with respect to a Galois covering having Γ as group of deck transformations. Likewise we also prove an L2-version of the Frölicher index theorem, see (3). Afterwards we give some applications of these two theorems and finally we conclude this paper by collecting other properties of the L2-Hodge numbers.
Von Neumann dimension, Hodge index theorem and geometric applications / Bei, F.. - In: EUROPEAN JOURNAL OF MATHEMATICS. - ISSN 2199-675X. - 5:4(2019), pp. 1212-1233. [10.1007/s40879-018-0269-2]
Von Neumann dimension, Hodge index theorem and geometric applications
Bei F.
2019
Abstract
A reformulation of the Hodge index theorem within the framework of Atiyah’s L2-index theory is provided. More precisely, given a compact Kähler manifold (M, h) of even complex dimension 2m, we prove that σ(M)=∑p,q=02m(-1)ph(2),Γp,q(M)where σ(M) is the signature of M and h(2),Γp,q(M) are the L2-Hodge numbers of M with respect to a Galois covering having Γ as group of deck transformations. Likewise we also prove an L2-version of the Frölicher index theorem, see (3). Afterwards we give some applications of these two theorems and finally we conclude this paper by collecting other properties of the L2-Hodge numbers.File | Dimensione | Formato | |
---|---|---|---|
Bei_postprint_Von-Neumann-dimension_2019.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
418.58 kB
Formato
Adobe PDF
|
418.58 kB | Adobe PDF | |
Bei_Von-Neumann-dimension_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
558.48 kB
Formato
Unknown
|
558.48 kB | Unknown | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.