Using an approach based on the heat kernel, we prove an Atiyah-Bott-Lefschetz theorem for the L2-Lefschetz numbers associated with an elliptic complex of cone differential operators over a compact manifold with conical singularities. We then apply our results to the case of the de Rham complex. © 2013 Springer Science+Business Media Dordrecht.

The L2-Atiyah-Bott-Lefschetz theorem on manifolds with conical singularities: A heat kernel approach / Bei, F.. - In: ANNALS OF GLOBAL ANALYSIS AND GEOMETRY. - ISSN 0232-704X. - 44:4(2013), pp. 565-605. [10.1007/s10455-013-9382-0]

The L2-Atiyah-Bott-Lefschetz theorem on manifolds with conical singularities: A heat kernel approach

Bei F.
2013

Abstract

Using an approach based on the heat kernel, we prove an Atiyah-Bott-Lefschetz theorem for the L2-Lefschetz numbers associated with an elliptic complex of cone differential operators over a compact manifold with conical singularities. We then apply our results to the case of the de Rham complex. © 2013 Springer Science+Business Media Dordrecht.
2013
Atiyah-Bott-Lefschetz theorem; differential cone operators; elliptic complexes; geometric endomorphisms; heat kernel; manifolds with conical singularities
01 Pubblicazione su rivista::01a Articolo in rivista
The L2-Atiyah-Bott-Lefschetz theorem on manifolds with conical singularities: A heat kernel approach / Bei, F.. - In: ANNALS OF GLOBAL ANALYSIS AND GEOMETRY. - ISSN 0232-704X. - 44:4(2013), pp. 565-605. [10.1007/s10455-013-9382-0]
File allegati a questo prodotto
File Dimensione Formato  
Bei_postprint_The-L2-Atiyah_2013.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 637.56 kB
Formato Adobe PDF
637.56 kB Adobe PDF
Bei_The-L2-Atiyah_2013.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 726.1 kB
Formato Adobe PDF
726.1 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1362768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact