Business process compliance checking enables organisations to assess whether their processes fulfil a given set of constraints, such as regulations, laws, or guidelines. Whilst many process analysts still rely on ad-hoc, often handcrafted per-case checks, a variety of constraint languages and approaches have been developed in recent years to provide automated compliance checking. A salient example is Declare, a well-established declarative process specification language based on temporal logics. Declare specifies the behaviour of processes through temporal rules that constrain the execution of tasks. So far, however, automated compliance checking approaches typically report compliance only at the aggregate level, using binary evaluations of constraints on execution traces. Consequently, their results lack granular information on violations and their context, which hampers auditability of process data for analytic and forensic purposes. To address this challenge, we propose a novel approach that leverages semantic technologies for compliance checking. Our approach proceeds in two stages. First, we translate Declare templates into statements in SHACL, a graph-based constraint language. Then, we evaluate the resulting constraints on the graph-based, semantic representation of process execution logs. We demonstrate the feasibility of our approach by testing its implementation on real-world event logs. Finally, we discuss its implications and future research directions.
Finding non-compliances with declarative process constraints through semantic technologies / Di Ciccio, C.; Ekaputra, F. J.; Cecconi, A.; Ekelhart, A.; Kiesling, E.. - 350:(2019), pp. 60-74. (Intervento presentato al convegno 31st International Conference on Advanced Information Systems Engineering, CAiSE 2019 tenutosi a Rome; Italy) [10.1007/978-3-030-21297-1_6].
Finding non-compliances with declarative process constraints through semantic technologies
Di Ciccio C.
;
2019
Abstract
Business process compliance checking enables organisations to assess whether their processes fulfil a given set of constraints, such as regulations, laws, or guidelines. Whilst many process analysts still rely on ad-hoc, often handcrafted per-case checks, a variety of constraint languages and approaches have been developed in recent years to provide automated compliance checking. A salient example is Declare, a well-established declarative process specification language based on temporal logics. Declare specifies the behaviour of processes through temporal rules that constrain the execution of tasks. So far, however, automated compliance checking approaches typically report compliance only at the aggregate level, using binary evaluations of constraints on execution traces. Consequently, their results lack granular information on violations and their context, which hampers auditability of process data for analytic and forensic purposes. To address this challenge, we propose a novel approach that leverages semantic technologies for compliance checking. Our approach proceeds in two stages. First, we translate Declare templates into statements in SHACL, a graph-based constraint language. Then, we evaluate the resulting constraints on the graph-based, semantic representation of process execution logs. We demonstrate the feasibility of our approach by testing its implementation on real-world event logs. Finally, we discuss its implications and future research directions.File | Dimensione | Formato | |
---|---|---|---|
DiCiccio_non-compliances_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
687.2 kB
Formato
Adobe PDF
|
687.2 kB | Adobe PDF | Contatta l'autore |
DiCiccio_postprint_non-compliances_2019.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
442.66 kB
Formato
Adobe PDF
|
442.66 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.