The registration of surfaces with non-rigid deformation, especially non-isometric deformations, is a challenging problem. When applying such techniques to real scans, the problem is compounded by topological and geometric inconsistencies between shapes. In this paper, we capture a benchmark dataset of scanned 3D shapes undergoing various controlled deformations (articulating, bending, stretching and topologically changing), along with ground truth correspondences. With the aid of this tiered benchmark of increasingly challenging real scans, we explore this problem and investigate how robust current state-of- the-art methods perform in different challenging registration and correspondence scenarios. We discover that changes in topology is a challenging problem for some methods and that machine learning-based approaches prove to be more capable of handling non-isometric deformations on shapes that are moderately similar to the training set.
SHREC’19: shape correspondence with isometric and non-isometric deformations / Dyke, R. M.; Stride, C.; Lai, Y. -K.; Rosin, P. L.; Aubry, M.; Boyarski, A.; Bronstein, A. M.; Bronstein, M. M.; Cremers, D.; Fisher, M.; Groueix, T.; Guo, D.; Kim, V. G.; Kimmel, R.; Lähner, Z.; Li, K.; Litany, O.; Remez, T.; Rodolà, E.; Russell, B. C.; Sahillioglu, Y.; Slossberg, R.; Tam, G. K. L.; Vestner, M.; Wu, ; and Yang, Z.. - (2019). (Intervento presentato al convegno 3DOR 19: the 12th Eurographics Workshop on 3D Object Retrieval tenutosi a Genova; Italy) [10.2312/3dor.20191069].
SHREC’19: shape correspondence with isometric and non-isometric deformations
Rodolà, E.;
2019
Abstract
The registration of surfaces with non-rigid deformation, especially non-isometric deformations, is a challenging problem. When applying such techniques to real scans, the problem is compounded by topological and geometric inconsistencies between shapes. In this paper, we capture a benchmark dataset of scanned 3D shapes undergoing various controlled deformations (articulating, bending, stretching and topologically changing), along with ground truth correspondences. With the aid of this tiered benchmark of increasingly challenging real scans, we explore this problem and investigate how robust current state-of- the-art methods perform in different challenging registration and correspondence scenarios. We discover that changes in topology is a challenging problem for some methods and that machine learning-based approaches prove to be more capable of handling non-isometric deformations on shapes that are moderately similar to the training set.File | Dimensione | Formato | |
---|---|---|---|
Dyke_SHREC_2019.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.55 MB
Formato
Adobe PDF
|
2.55 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.