In these proceedings we present the study of a four-point function that is involved in the evaluation of the Master Integrals necessary to compute the two-loop massive QCD planar corrections to ¯ production in the gluon fusuin channel, at hadron colliders. The solution involves complete elliptic integrals of the first and second kind and one- or two-fold integrations of such elliptic integrals multiplied by ratios of polynomials, inverse square roots and logarithms or dilogarithms.
A Four-Point Function for the Planar QCD Massive Corrections to Top-Antitop Production in the Gluon-Fusion Channel / Bonciani, Roberto; Capozi, Matteo; Caucal, Paul. - (2019), pp. 93-106. (Intervento presentato al convegno KMPB Conference : Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory. tenutosi a DESY Zeuthen, Germany) [10.1007/978-3-030-04480-0_5].
A Four-Point Function for the Planar QCD Massive Corrections to Top-Antitop Production in the Gluon-Fusion Channel
Bonciani, Roberto;
2019
Abstract
In these proceedings we present the study of a four-point function that is involved in the evaluation of the Master Integrals necessary to compute the two-loop massive QCD planar corrections to ¯ production in the gluon fusuin channel, at hadron colliders. The solution involves complete elliptic integrals of the first and second kind and one- or two-fold integrations of such elliptic integrals multiplied by ratios of polynomials, inverse square roots and logarithms or dilogarithms.File | Dimensione | Formato | |
---|---|---|---|
Bonciani_A Four-Point Function_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
433.5 kB
Formato
Adobe PDF
|
433.5 kB | Adobe PDF | Contatta l'autore |
Book_EllipticIntegralsEllipticFunct_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
10.14 MB
Formato
Adobe PDF
|
10.14 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.