This study focuses on the application of the concept of circular economy, with the creation of added-value marketable products and energy from organic waste while minimizing environmental impacts. Within this purpose, an urban biorefinery technology chain has been developed at pilot scale in the territorial context of the Treviso municipality (northeast Italy) for the production of biopolymers (polyhydroxyalkanoates, PHAs) and biogas from waste of urban origin. The piloting system (100–380 L) comprised the following units: a) acidogenic fermentation of the organic fraction of municipal solid waste (OFMSW) and biological sludge; b) two solid/liquid separation steps consisting of a coaxial centrifuge and a tubular membrane (0.2 μm porosity); c) a Sequencing Batch Reactor (SBR) for aerobic PHA-storing biomass production; d) aerobic fed-batch PHA accumulation reactor and e) Anaerobic co-digestion (ACoD). The thermal pre-treatment (72 °C, 48 h) of the feedstock enhanced the solubilization of the organic matter, which was converted into volatile fatty acids (VFAs) in batch mode under mesophilic fermentation conditions (37 °C). The VFA content increased up to 30 ± 3 g COD/L (overall yield 0.65 ± 0.04 g CODVFA/g VS(0)), with high CODVFA/CODSOL (0.86 ± 0.05). The high CODVFA/CODSOL ratio enhanced the PHA-storing biomass selection in the SBR by limiting the growth of the non-storing microbial population. Under fully aerobic feast-famine regime, the selection reactor was continuously operated for 6 months at an average organic loading rate (OLR) of 4.4 ± 0.6 g COD/L d and hydraulic retention time (HRT) of 1 day (equal to SRT). The ACoD process (HRT 15 days, OLR 3.0–3.5 kg VS/m3 d) allowed to recover the residual solid-rich overflows generated by the two solid/liquid separation units with the production of biogas (SGP 0.44–0.51 m3/kg VS) and digestate. An overall yield of 7.6% wt PHA/VS(0) has been estimated from the mass balance. In addition, a preliminary insight into potential social acceptance and barriers regarding organic waste-derived products was obtained. © 2019 Elsevier Ltd

An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas / Moretto, Giulia; Russo, Ivan; Bolzonella, David; Pavan, Paolo; Majone, Mauro; Valentino, Francesco. - In: WATER RESEARCH. - ISSN 0043-1354. - 170:(2020). [10.1016/j.watres.2019.115371]

An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas

Pavan, Paolo;Majone, Mauro;Valentino, Francesco
2020

Abstract

This study focuses on the application of the concept of circular economy, with the creation of added-value marketable products and energy from organic waste while minimizing environmental impacts. Within this purpose, an urban biorefinery technology chain has been developed at pilot scale in the territorial context of the Treviso municipality (northeast Italy) for the production of biopolymers (polyhydroxyalkanoates, PHAs) and biogas from waste of urban origin. The piloting system (100–380 L) comprised the following units: a) acidogenic fermentation of the organic fraction of municipal solid waste (OFMSW) and biological sludge; b) two solid/liquid separation steps consisting of a coaxial centrifuge and a tubular membrane (0.2 μm porosity); c) a Sequencing Batch Reactor (SBR) for aerobic PHA-storing biomass production; d) aerobic fed-batch PHA accumulation reactor and e) Anaerobic co-digestion (ACoD). The thermal pre-treatment (72 °C, 48 h) of the feedstock enhanced the solubilization of the organic matter, which was converted into volatile fatty acids (VFAs) in batch mode under mesophilic fermentation conditions (37 °C). The VFA content increased up to 30 ± 3 g COD/L (overall yield 0.65 ± 0.04 g CODVFA/g VS(0)), with high CODVFA/CODSOL (0.86 ± 0.05). The high CODVFA/CODSOL ratio enhanced the PHA-storing biomass selection in the SBR by limiting the growth of the non-storing microbial population. Under fully aerobic feast-famine regime, the selection reactor was continuously operated for 6 months at an average organic loading rate (OLR) of 4.4 ± 0.6 g COD/L d and hydraulic retention time (HRT) of 1 day (equal to SRT). The ACoD process (HRT 15 days, OLR 3.0–3.5 kg VS/m3 d) allowed to recover the residual solid-rich overflows generated by the two solid/liquid separation units with the production of biogas (SGP 0.44–0.51 m3/kg VS) and digestate. An overall yield of 7.6% wt PHA/VS(0) has been estimated from the mass balance. In addition, a preliminary insight into potential social acceptance and barriers regarding organic waste-derived products was obtained. © 2019 Elsevier Ltd
File allegati a questo prodotto
File Dimensione Formato  
Moretto_An-urban2020.pdf

solo gestori archivio

Note: https://doi.org/10.1016/j.watres.2019.115371
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/1357219
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 61
social impact