Bayesian inference under imprecise prior information is studied: the starting point is a precise strategy σ and a full B-conditional prior belief function BelB, conveying ambiguity in probabilistic prior information. In finite spaces, we give a closed form expression for the lower envelope P of the class of full conditional probabilities dominating BelB, σ and, in particular, for the related “posterior probabilities”. The assessment BelB, σ is a coherent lower conditional probability in the sense of Williams and the characterized lower envelope P coincides with its natural extension.

Bayesian inference under ambiguity: Conditional prior belief functions / Coletti, G.; Petturiti, D.; Vantaggi, B.. - 62:(2017), pp. 73-84. (Intervento presentato al convegno 10th International Symposium on Imprecise Probability: Theories and Applications, ISIPTA 2017 tenutosi a LUGANO).

Bayesian inference under ambiguity: Conditional prior belief functions

Vantaggi B.
2017

Abstract

Bayesian inference under imprecise prior information is studied: the starting point is a precise strategy σ and a full B-conditional prior belief function BelB, conveying ambiguity in probabilistic prior information. In finite spaces, we give a closed form expression for the lower envelope P of the class of full conditional probabilities dominating BelB, σ and, in particular, for the related “posterior probabilities”. The assessment BelB, σ is a coherent lower conditional probability in the sense of Williams and the characterized lower envelope P coincides with its natural extension.
2017
10th International Symposium on Imprecise Probability: Theories and Applications, ISIPTA 2017
Ambiguity; Bayesian conditioning rule; Conditional belief function; Inference
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Bayesian inference under ambiguity: Conditional prior belief functions / Coletti, G.; Petturiti, D.; Vantaggi, B.. - 62:(2017), pp. 73-84. (Intervento presentato al convegno 10th International Symposium on Imprecise Probability: Theories and Applications, ISIPTA 2017 tenutosi a LUGANO).
File allegati a questo prodotto
File Dimensione Formato  
Vantaggi_Bayesian-Inference -under-Ambiguity_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 292.77 kB
Formato Adobe PDF
292.77 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1355423
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact