Controlling the propagation of information in social networks is a problem of growing importance. On one hand, users wish to freely communicate and interact with their peers. On the other hand, the information they spread can bring to harmful consequences if it falls in the wrong hands. There is therefore a trade-off between utility, i.e., reaching as many intended nodes as possible, and privacy, i.e., avoiding the unintended ones. The problem has attracted the interest of the research community: some models have already been proposed to study how information propagate and to devise policies satisfying the intended privacy and utility requirements. In this paper we adapt the basic framework of Backes et al. to include more realistic features, that in practice influence the way in which information is passed around. More specifically, we consider: (a) the topic of the shared information, and (b) the time spent by users to forward information among them. For both features, we show a way to reduce our model to the basic one, thus allowing the methods provided in the original paper to cope with our enhanced scenarios. Furthermore, we propose an enhanced formulation of the utility/privacy policies, to maximize the expected number of reached users among the intended ones, while minimizing this number among the unintended ones, and we show how to adapt the basic techniques to these enhanced policies.

Enhanced models for privacy and utility in continuous-time diffusion networks / GORLA, DANIELE; GRANESE, FEDERICA; Palamidessi, Catuscia. - 11884:(2019), pp. 313-331. (Intervento presentato al convegno Theoretical Aspects of Computing tenutosi a Hammammeth; Tunisia) [10.1007/978-3-030-32505-3_18].

Enhanced models for privacy and utility in continuous-time diffusion networks

Daniele Gorla;Federica Granese;
2019

Abstract

Controlling the propagation of information in social networks is a problem of growing importance. On one hand, users wish to freely communicate and interact with their peers. On the other hand, the information they spread can bring to harmful consequences if it falls in the wrong hands. There is therefore a trade-off between utility, i.e., reaching as many intended nodes as possible, and privacy, i.e., avoiding the unintended ones. The problem has attracted the interest of the research community: some models have already been proposed to study how information propagate and to devise policies satisfying the intended privacy and utility requirements. In this paper we adapt the basic framework of Backes et al. to include more realistic features, that in practice influence the way in which information is passed around. More specifically, we consider: (a) the topic of the shared information, and (b) the time spent by users to forward information among them. For both features, we show a way to reduce our model to the basic one, thus allowing the methods provided in the original paper to cope with our enhanced scenarios. Furthermore, we propose an enhanced formulation of the utility/privacy policies, to maximize the expected number of reached users among the intended ones, while minimizing this number among the unintended ones, and we show how to adapt the basic techniques to these enhanced policies.
2019
Theoretical Aspects of Computing
diffusion networks; privacy/utility; submodular functions
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Enhanced models for privacy and utility in continuous-time diffusion networks / GORLA, DANIELE; GRANESE, FEDERICA; Palamidessi, Catuscia. - 11884:(2019), pp. 313-331. (Intervento presentato al convegno Theoretical Aspects of Computing tenutosi a Hammammeth; Tunisia) [10.1007/978-3-030-32505-3_18].
File allegati a questo prodotto
File Dimensione Formato  
Gorla_Enhanced_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 438.07 kB
Formato Adobe PDF
438.07 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1355276
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact