Usage of Graphics Processing Units (GPUs) in the so called general-purpose computing is emerging as an effective approach in several fields of science, although so far applications have been employing GPUs typically for offline computations. Taking into account the steady performance increase of GPU architectures in terms of computing power and I/O capacity, the real-time applications of these devices can thrive in high-energy physics data acquisition and trigger systems. We will examine the use of online parallel computing on GPUs for the synchronous low-level trigger, focusing on tests performed on the trigger system of the CERN NA62 experiment. To successfully integrate GPUs in such an online environment, latencies of all components need analysing, networking being the most critical. To keep it under control, we envisioned NaNet, an FPGA-based PCIe Network Interface Card (NIC) enabling GPUDirect connection. Furthermore, it is assessed how specific trigger algorithms can be parallelized and thus benefit from a GPU implementation, in terms of increased execution speed. Such improvements are particularly relevant for the foreseen Large Hadron Collider (LHC) luminosity upgrade where highly selective algorithms will be essential to maintain sustainable trigger rates with very high pileup.

Graphics processors in HEP low-level trigger systems / Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cotta Ramusino, A.; Cretaro, P.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.. - 127:(2016), p. 00011. (Intervento presentato al convegno 2016 Connecting the Dots tenutosi a Vienna (aut)) [10.1051/epjconf/201612700011].

Graphics processors in HEP low-level trigger systems

Cretaro P.;Lonardo A.;
2016

Abstract

Usage of Graphics Processing Units (GPUs) in the so called general-purpose computing is emerging as an effective approach in several fields of science, although so far applications have been employing GPUs typically for offline computations. Taking into account the steady performance increase of GPU architectures in terms of computing power and I/O capacity, the real-time applications of these devices can thrive in high-energy physics data acquisition and trigger systems. We will examine the use of online parallel computing on GPUs for the synchronous low-level trigger, focusing on tests performed on the trigger system of the CERN NA62 experiment. To successfully integrate GPUs in such an online environment, latencies of all components need analysing, networking being the most critical. To keep it under control, we envisioned NaNet, an FPGA-based PCIe Network Interface Card (NIC) enabling GPUDirect connection. Furthermore, it is assessed how specific trigger algorithms can be parallelized and thus benefit from a GPU implementation, in terms of increased execution speed. Such improvements are particularly relevant for the foreseen Large Hadron Collider (LHC) luminosity upgrade where highly selective algorithms will be essential to maintain sustainable trigger rates with very high pileup.
2016
2016 Connecting the Dots
GPU; RICH; low-latency; network interface; real-time processing; high performance data analytics; FPGA; NA62; HEP
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Graphics processors in HEP low-level trigger systems / Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cotta Ramusino, A.; Cretaro, P.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.. - 127:(2016), p. 00011. (Intervento presentato al convegno 2016 Connecting the Dots tenutosi a Vienna (aut)) [10.1051/epjconf/201612700011].
File allegati a questo prodotto
File Dimensione Formato  
Lonardo_Graphics-processors_2016.pdf

accesso aperto

Note: Articolo completo
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1353517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact