A commercial Graphics Processing Unit (GPU) is used to build a fast Level 0 (L0) trigger system for the NA62 experiment at CERN. In particular, the parallel computing power of the GPU is exploited to perform real-time fitting in the Ring Imaging CHerenkov (RICH) detector for the L0 trigger of the NA62 experiment. Direct GPU communication using a FPGA-based board has been used to reduce the data transmission latency. The first result of multi-ring Cherenkov reconstrunction obtained during the NA62 physics run will be presented.

GPU-based low-level trigger system for real-time Cherenkov ring fitting / Ammendola, R.; Biagioni, A.; Chiozzi, S.; Ramusino, A. C.; Fantechi, R.; Fiorini, M.; Frezza, O.; Gianoli, A.; Lamanna, G.; Cicero, F. L.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Santoni, C.; Simula, F.; Sozzi, M.; Tosoratto, L.; Vicini, P.. - (2016), pp. 1-4. (Intervento presentato al convegno 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015 tenutosi a San Diego, CA; USA) [10.1109/NSSMIC.2015.7581774].

GPU-based low-level trigger system for real-time Cherenkov ring fitting

Lonardo A.;Pastorelli E.;Tosoratto L.;
2016

Abstract

A commercial Graphics Processing Unit (GPU) is used to build a fast Level 0 (L0) trigger system for the NA62 experiment at CERN. In particular, the parallel computing power of the GPU is exploited to perform real-time fitting in the Ring Imaging CHerenkov (RICH) detector for the L0 trigger of the NA62 experiment. Direct GPU communication using a FPGA-based board has been used to reduce the data transmission latency. The first result of multi-ring Cherenkov reconstrunction obtained during the NA62 physics run will be presented.
2016
2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015
GPU; Level-0; NaNet-1; RICH; trigger
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
GPU-based low-level trigger system for real-time Cherenkov ring fitting / Ammendola, R.; Biagioni, A.; Chiozzi, S.; Ramusino, A. C.; Fantechi, R.; Fiorini, M.; Frezza, O.; Gianoli, A.; Lamanna, G.; Cicero, F. L.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Santoni, C.; Simula, F.; Sozzi, M.; Tosoratto, L.; Vicini, P.. - (2016), pp. 1-4. (Intervento presentato al convegno 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015 tenutosi a San Diego, CA; USA) [10.1109/NSSMIC.2015.7581774].
File allegati a questo prodotto
File Dimensione Formato  
Ammendola_GPU-based_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 273.44 kB
Formato Adobe PDF
273.44 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1353509
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact